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Abstract

Feeding America, an organisation responsible for feeding 130,000 Americans

every day, distributes food among a nationwide network of food banks. Their

allocation mechanism, known as the ‘Choice System’, uses auctions and a vir-

tual currency to give food banks choice over the food they receive. This paper

examines the consequences of enabling this choice. I apply a dynamic auction

model to food bank bidding data, estimating the distribution of food banks’

heterogeneous and time-varying needs. The central challenge is that I do not

observe food banks’ inventories — a key determinant of bidding behaviour.

I overcome this difficulty using variation in food banks’ winnings (observed

shifters of these unobserved stocks) to identify the model, which I estimate

using a Gibbs Sampler. I then compare welfare under the Choice System to

Feeding America’s previous allocation mechanism which gave food banks very

limited choice. I estimate that the Choice System increased welfare by the

equivalent of a 32.7% increase in the quantity of food allocated. Most of this

gain arises because food is allocated in batches, rather than sequentially.
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1 Introduction

Organisations are regularly faced with the problem of allocating scarce resources as

efficiently and as equitably as possible. Governments must decide how to allocate

contracts to contractors, local authorities must allocate school places to students,

and health officials must allocate kidneys to transplant patients. Feeding America,

a not-for-profit responsible for feeding 130,000 people every day, must decide how to

allocate truckloads of donated food among its network of regional food banks.

The efficient and equitable allocation of food is a priority for Feeding America,

to ensure that food banks can meet the ever-increasing demand for their services.

Like many food relief organisations around the world, Feeding America previously

employed a mechanism that allowed food banks very little choice in the food they

received. Under this mechanism, referred to as the ‘Old System’, food banks would

queue until they were offered an essentially random truckload of food. This mecha-

nism was unpopular as food banks were rarely offered the types of food they needed.

Efficient central planning is difficult because of unobserved heterogeneity in food

banks’ needs: Different food banks need different types of food at different times.1

This heterogeneity arises because food banks in different parts of the country have

access to different types of food from their local donors, and these types of food are

liable to change over time. Instead, Feeding America’s current allocation mechanism,

the ‘Choice System’, consists of an auction market in which food banks receive an

amount of virtual currency to bid on loads of donated food (Prendergast, 2017). This

gives food banks a large degree of choice, giving them control over their allocations.

In this paper I use a rich model of food bank bidding behaviour to investigate

welfare under the Choice System, compared to alternative mechanisms that allow

food banks varying degrees of choice. I develop a novel empirical strategy to estimate

food banks’ demand functions despite not observing their inventories, applying a

dynamic auction model with storable goods to detailed Choice System data. I exploit

the panel dimension of the data to allow demand to vary across food banks and

over time, as different food banks have different storage capacities, cater to different

1I use the term ‘needs’ to capture both what a food bank has a preference for, on behalf of their
clients, as well as what they have room for in their warehouse. In this way, the term is intended to
capture the determinants of a food bank’s demand function — a food bank with a warehouse full
of cornflakes may still have positive marginal utility of additional cornflakes, but due to capacity
constraints will not demand additional cornflakes.
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numbers of clients, and receive different types of food at different times from their local

donors. I then use these estimates to evaluate equilibrium allocations under a number

of alternative allocation mechanisms. Counterfactual simulations demonstrate that,

relative to the Old System, the Choice System is extremely effective at achieving

Feeding America’s goals: Welfare is 32.7% higher under the Choice System than the

Old System. Furthermore, despite fears that a market mechanism could lead to a

more unequal distribution of food, on average 87.9% of food banks are estimated to

be better off under the Choice System.

In order to investigate food banks’ needs, and so evaluate welfare under various al-

location mechanisms, I first develop a structural model of food banks bidding for food

on the Choice System. The structural model combines the storable goods framework

of Hendel and Nevo (2006) with the dynamic multi-object auction model of Altmann

(2022). Descriptive evidence demonstrates the need for this framework: Conditional

on winning a load, food banks are less likely to bid on similar loads on subsequent

days even when the price is essentially zero. They then return to bidding some time

later, having given out this food over the course of several days. This suggests food

banks treat loads as a storable good subject to storage costs. This dynamic linkage

emphasises the need for a model that accounts for the dynamic environment. Mean-

while, when multiple similar loads are auctioned simultaneously food banks are less

likely to bid on any given load. This suggests that similar loads are substitutable, and

requires a multi-object model to account for the simultaneous auction environment.

The importance of choice depends on the degree of unobserved heterogeneity in

food banks’ preferences and storage costs, as well as the degree of substitutability

of different types of food. The model incorporates this in three key ways. First,

food is classified by how it is stored (capturing storage costs), and how it is used.

Second, the long panel (around 900 days) allows me to estimate distinct parameters

for each food bank, allowing for permanent heterogeneity across food banks. Finally,

I allow for time-varying unobserved heterogeneity, which I attribute to the fact that

I do not observe food banks’ stocks of various types of food. This captures how a

food bank’s clients irregular take food from their local food bank, and food banks

irregularly receive food from their local donors.

The central challenge, for both identification and estimation, is that I do not

observe food banks’ stocks. Current stocks are a key determinant of demand — if a

food bank stops bidding it might be because, unobserved by the econometrician, they
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recently received food from a local donor. Building on Hu and Shum (2012) I prove

that the model is non-parametrically identified. Key to the argument is variation in

food banks’ choice sets and winnings, and how this subsequently drives variation in

bidding behaviour. Winnings in particular are key, as these are essentially observed

changes in the unobserved stocks.2 A methodological contribution of this paper is to

develop a procedure to estimate bidders’ values in a dynamic auction environment

when individual state variables (stocks) are unobserved. I overcome this problem

using a Gibbs Sampling procedure, employing a data-augmentation step to draw the

unobserved stocks from their conditional posterior distribution. To the best of my

knowledge this is the first paper to estimate a model of this type.

I employ the three step estimation procedure introduced in Altmann (2022). In

the first step I estimate equilibrium beliefs by estimating the conditional distribution

of winning bids. I then invert food banks’ first order conditions for optimal bidding,

obtaining an inverse bidding system as in Guerre et al. (2000) and Gentry et al. (2023).

In the second step, using the inverse bidding system, I estimate the distribution of

food banks’ ‘Pseudo-Static’ payoffs from winning combinations of lots. This means

I estimate the sum of bidders’ flow payoff and their discounted continuation value

— essentially estimating the model as though food banks were myopic. During this

step I also estimate the transition process for food banks’ stocks. Finally, in the

spirit of Jofre-Bonet and Pesendorfer (2003), the continuation value can be written

as a function of observed bids, beliefs, and this pseudo-payoff function. Therefore,

in the third step I evaluate the estimated continuation value, before backing out the

distribution of flow payoffs from the definition of the pseudo-payoffs.

I find significant evidence of demand heterogeneity both across food banks and

over time. I estimate large differences in access to local donors and variability of local

donations, varying by a factor of 30 across food banks. Meanwhile, I estimate that

variation in stocks account for 93% of the unexplained variation in bidding behaviour.

Food banks go through extended periods with high stocks, during which they rarely

place bids, and periods with low stocks, during which they bid frequently.

2How bidding behaviour varies with the number and composition of available lots identifies food
banks’ storage capacities: A food bank facing high storage costs will only bid on a small subset of
available lots, to avoid winning more than it can afford to store. Meanwhile, after winning a lot, the
length of time before food banks return to their average bidding propensity enables identification
of the unobserved state transition process: If it takes them a long time to return to bidding on a
particular type of food, this suggests they generally have access to that food from their local donors.
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Using the estimated model I then simulate equilibrium allocations under the Old

System. This enables me to consider the welfare and distributional consequences of

Feeding America’s transition to the Choice System, building on evidence presented in

Prendergast (2017) and Prendergast (2022). Welfare is 32.7% higher under the Choice

System than under the Old System. This is roughly equivalent to an additional 86.5

tons of food allocated each day, enough to support an additional 35,100 people. This

arises because, under the Old System, food banks are roughly three times more willing

to accept any load they are offered than under the Choice System, as they do not

know when they will next be offered food. They accept food that does not directly

meet their needs, food that may be used more effectively by another food bank at

that point in time. Meanwhile, on average 87.9% of food banks are better off under

the Choice System, and no individual food bank is statistically significantly worse off.

I then use additional simulations, varying the different aspects of these mecha-

nisms, to tease out the most important features of the Choice System. Features we

can then take to other food relief organisations around the world. In particular, by

comparing the Old System to running sequential auctions, we learn about the impor-

tance of allowing food banks to signal the intensity of their preference for each load.

This establishes the relative importance of ensuring food goes to the food bank who

values it most, rather than essentially being offered out at random. Then, by com-

paring sequential auctions to the Choice System, which uses simultaneous auctions,

we learn about the importance of simultaneous versus sequential allocation. Under

sequential allocation every donation is allocated before the next arrives. Whereas al-

locating food in batches ensures food banks have information about all the food being

allocated on a given day when making decisions, giving them more control over their

allocations. Decomposing the welfare gain from transitioning to the Choice System,

36% of this improvement comes from the signalling effect, while 48% comes from the

batching effect. This is an important result in practice as the majority of other food

relief organisations around the world allocate food sequentially.

Finally, I explicitly consider the efficacy of several mechanisms used by other food

relief organisations. For example, a mechanism that offers food only to the nearest

food bank, aiming to minimise transportation costs, achieves only 20% of the welfare

under the Choice System. At least in the U.S. setting, transportation costs are not so

important. Many food networks, including the Trussell Trust in the U.K., implicitly

use this mechanism by linking food banks up with additional nearby donors instead
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of allocating food centrally.

1.1 Related Literature

This paper contributes to the literatures on empirical market design, empirical auction

econometrics, and storable goods.

Empirical market design is a growing literature analysing preferences and alloca-

tions in centralised assignment markets. The papers most similar to this one are

Prendergast (2017) and Prendergast (2022) who also study Feeding America’s Choice

System. My structural approach is complementary to their predominantly descriptive

approaches, enabling detailed welfare analysis and investigation of which features of

the Choice System are the most important. I employ richer data that is disaggregated

at the auction level and includes information on losing bids. By studying the exact

timing of bids I gain a detailed understanding of how food banks make inter-temporal

substitutions. This allows me to simulate alternative dynamic allocation mechanisms

and shed light on the key features of the Choice System. Papers studying other allo-

cation settings include Agarwal et al. (2020) and Agarwal et al. (2021) on deceased

donor kidney waitlists, Waldinger (2021) on public housing, and Verdier and Reeling

(2022) on hunting licenses. Similar to this paper, they assess the value of giving agents

choice over allocations, considering trade-offs between efficiency and other concerns

of policy makers. While heterogeneity in match values is an important theme of all

these papers, this is the first to consider the role of heterogeneity over time.

I also build on the dynamic multi-object auction model of Altmann (2022), which

combines the models of Jofre-Bonet and Pesendorfer (2003) and Gentry et al. (2023).

Unlike these papers reservation prices and endogenous entry are important in my

application, with the average bidder only bidding on around 2% of auctions. The

focus on a large auction market is similar to Backus and Lewis (2024) who introduce

a framework for analysing dynamic bidding in large single-unit second-price auctions,

which is employed in Bodoh-Creed et al. (2021) among others. In empirical auction

studies it is standard to impute bidder’s state variables, such as backlogs of contracts

or stocks. This is the first auction study to allow state variables to be unobserved.

Finally, I contribute to the econometric literature on storable goods and identifi-

cation of unobserved states. One distinction between my model and those of Hendel

and Nevo (2006) and Erdem et al. (2003) (among others) is the role local donations,
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a key driver of heterogeneous behaviour across food banks and across time. To my

knowledge, this is the first paper to formally prove identification of a storable goods

model. Non-parametric identification results are important for ensuring that iden-

tification is not purely driven by restrictive parametric assumptions, and that these

can be considered (potentially restrictive) finite-sample approximations. My proof

builds on the methodology of Hu and Shum (2012) and Hu and Schennach (2008),

leveraging observed shifters of the unobserved state for identification.

1.2 Overview

Section 2 describes the institutions and data being studied. Section 3 provides de-

scriptive evidence of heterogeneous needs and presents several key stylised facts be-

hind bidding behaviour. Section 4 outlines the model of food bank behaviour and

discusses identification. Section 5 describes the parametrisation and estimation pro-

cedure, while 6 details the estimation results. Section 7 describes the counterfactual

mechanisms and presents the results from several simulations.

2 Institutional Background and Data

This section details Feeding America and their allocation mechanisms. Details come

from Prendergast (2017). In Section 2.2 I describe the data.

2.1 Feeding America

Feeding America began in 1976 as a collection of food banks that would solicit do-

nations from local grocery stores and farms. As additional food banks joined their

network it became necessary to co-ordinate resource sharing. In 2005, at the rec-

ommendation of a task force consisting of economists and food bank managers, they

replaced the Old System with the Choice System. Many of Feeding America’s associ-

ated food banks operate as standard food pantries — directly giving out food to those

in need. However, the majority of food banks act as food distributors; themselves

responsible for storing and sending out food to hundreds of local food pantries.
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2.1.1 The Old System

Under the Old System any truckload of food donated to Feeding America was offered

to the head of a queue. The potential recipient had a few hours to accept or decline

before it was offered to the next food bank. This meant that each load could only be

offered to around ten food banks before being returned to the donor. To discourage

rejections, food banks would return to the back of the queue regardless of whether

they accepted. A food bank’s relative position in the queue was determined jointly

by whether they had recently been offered food, and their ‘Goal Factor’, a measure of

poverty in their catchment area. A higher Goal Factor implies more mouths to feed,

so these food banks should be offered more food. Transportation costs were paid by

the food banks, many of whom have fleets of trucks and lorries for this purpose.

The type of food in each truckload was essentially random, so that on average food

banks received the same quantities of food per mouth. This would have been optimal

if food banks all had the same preferences and capacities. In reality, different food

banks needed different types of food at different times. Food banks use food from

Feeding America to substitute for food they do not receive from their local donors.

Feeding America wanted to improve welfare by taking account of differing needs, so

decided to use a market mechanism to give food banks control over their allocations.

2.1.2 The Choice System

The Choice System consists of simultaneous first-price sealed-bid auctions. Two

rounds of auctions occur each day, five days a week, with around 30 lots auctioned

each day. Bidders observe the previous winning bids for a particular type of food,

making it easier for food banks to know how to bid. Outcomes of auctions that occur

simultaneously are independent, and bidders cannot place combination bids. Winners

generally pay to transport their winnings.

Food banks bid with a virtual currency called ‘shares’. Other than storage and

transportation costs, the only opportunity cost a food bank faces when bidding is

that they will have fewer shares to bid on other lots. Feeding America can ensure

that food banks with larger Goal Factors are allocated more shares and, consequently,

receive more food. Shares are redistributed each night. Food banks can save shares

from one day to the next. Those with less than the median allocation of shares have

access to interest-free credit, so that food banks can smooth their consumption over
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time. The money supply is set to ensure that prices remain constant (on average)

over time, reacting to changes in the supply of food.

Food banks can bid negative amounts, down to a reserve price of −2000 shares.

This incentivises food banks to accept undesirable loads, helping Feeding America

maintain good relations with their donors by ensuring that every lot is graciously

accepted. On average 34% of lots are sold at weakly negative prices, and 10% are

sold at the reservation price.3 Negative prices occur because food banks face storage

costs. Partly these are physical costs, but also the opportunity cost of volunteers’

time and effort to make sure every load is packaged and stored properly to ensure

that as little food spoils as possible.

The introduction of a market mechanism had the potential to disadvantage smaller

food banks. Feeding America incorporated several features to alleviate this risk, in-

cluding credit use, a fairness committee, and joint bidding.4 For this reason, food

banks report great satisfaction with the mechanism. The Choice System incorporates

several additional features designed to tackle various intricacies of the food alloca-

tion problem, including allowing multiple homogeneous loads to be allocated using

discriminatory auctions and allowing food banks to sell excess local donations.5

2.2 The Data

Two main sources of data were used for this paper. I use proprietary bidding data

from the Choice System, which was provided by Feeding America. I also use publicly

available data on food bank demographics and catchment areas.

3While 9% of lots are not sold right away, most are sold the following day. Lots not sold right
away are predominantly multiple loads of bottled water and juice. The numbers are skewed by 130
loads of 8 litre bottles sold over several months.

4Several small food banks place the majority of their bids jointly with other small food banks
as they are unable to use an entire truckload of food on their own. Meanwhile, those responsible for
the majority of consumption do not bid jointly. For this reason I generally ignore this decision.

5The structural model correctly models the discriminatory auctions distinctly from the standard
simultaneous auctions — the only difference is that one cannot lose a unit for a high bid yet win
a lot for a lower bid. Meanwhile, food sold by food banks only makes up 4.5% of lots. The food
banks who rely most on the Choice System (and those included in estimation) almost never sell their
excess, despite their storage costs. This is due to additional distortions in this market, including
taxes and additional transportation costs. For this reason I generally ignore the decision to sell food.
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2.2.1 Choice System data

The Choice System dataset contains information on 26, 617 individual auctions held

from January 2014 to October 2017, covering 165 food banks. The data includes

winning and losing bids, as well as information on the food composition and locations.6

The sheer volume of types of food being auctioned makes categorisation necessary.

I split food into 15 categories, largely the same categories used in Prendergast (2017).

To capture different types food being imperfectly substitutable and having different

uses I further split food into 152 subcategories. To capture storage costs I categorise

food into four storage types: Dried, Tinned/Bottled, Refrigerated, and Non-Food.7

Many loads contain multiple types of food. Around 30% of the food being auctioned

is fresh produce. However, eighteen months into my sample Feeding America stopped

allocating produce centrally, and began sending it to one or two (urban) food banks

that previously consumed almost all the produce. For this reason, I drop data on

produce, and instead treat it as local donations. The previous version of this paper

included produce and found extremely similar results.

Figure 1 presents descriptive statistics on the auctioned lots, split by storage

method. Several things are evident: First, many lots are allocated simultaneously,

and lots come in variable sizes. Second, only a small number of bidders bid on any

given lot, and a large proportion sell for negative prices — particularly low quality

beverages (included in Tinned). This suggests low demand for these types of food.8

6I do not observe whether a given auction happened in the morning or afternoon, so assume all
auctions in a day happen at the same time. This is a potential weakness of this analysis. However
anecdotal evidence suggests that most food banks bid in only one auction round per day. This was
suggested by Canice Prendergast, one of the Choice System’s designers. If food banks are optimally
choosing not to bid on any auction in a given round then the inaccuracy of my results will be minor.

7Refrigerated includes anything that needs to be stored in a fridge or freezer, such as meat and
dairy. Tinned and Bottled food includes anything with a long shelf-life that is tinned or bottled,
ranging from baked beans to bottled water. Dry food captures long shelf-life food such as cereal,
pasta, or cookies. Non-food items includes non-edible items, predominantly cleaning products and
baby food. See Appendix A for additional discussion of how food was categorised.

8This could be explained by bidders colluding. In practice collusion is highly unlikely, given how
this harms non-colluding food banks and that most food bank managers are extremely prosocial.
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Figure 1: Descriptive Statistics, across lots

Dried Tinned Fridge Non-food Mixed Total

Daily lots
(mean) 10.74 10.83 5.11 3.3 4.78 32.74
(std) 8.35 10.8 3.76 3.21 3.94 16.8

Pounds per lot
(mean, 000s) 22.5 34.3 28 20.4 27 26.5
(std, 000s) 9.7 8.3 10.2 12.2 10.6 10.9

Winning bid
(mean) 2106 1085 2688 2967 2515 2134
(std) 5329 6414 6176 6436 5207 5818

No. bidders
(mean) 2.95 2.7 2.5 3 2.8 2.8
(std) 3.14 3.5 3.12 3.26 3.08 3.21

% Allocated 93 83 91 91 95 91
% Negative prices 35 47 29 28 27 34

Note: Mixed loads are presented separately for this figure only. Winning bids includes the reserva-

tion price when no bids are received. ‘Allocated immediately’ refers to the percentage of lots that

receive at least one bid above the reserve. Negative prices include loads allocated for 0 shares.

2.2.2 Auxiliary Data

I construct food banks’ Goal Factors using the formulae in Prendergast (2022), freely

available location and catchment data for food banks, and food insecurity data.9

Figure 2 summarises the relevant demographic information and bidding behaviour of

food banks. The key take-way is that characteristics and behaviour differ drastically

across food banks, suggestive of their heterogeneous needs.

3 Descriptive Evidence

In section 3.1 I present suggestive evidence of heterogeneity, highlighting the likely

value of choice. Then, in section 3.2 I investigate the key determinants of bidding,

putting together several stylised facts motivating my model’s key features.

9These are available from https://www.feedingamerica.org/find-your-local-foodbank and from
Feeding America’s ‘Hunger in America’ on-line tool https://map.feedingamerica.org
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Figure 2: Descriptive Statistics, across food banks

Mean p10 p25 p50 p75 p90

Population (000s) 1913 384 676 1270 2543 4385
Poverty (000s) 284 64 99 191 373 645
Goal Factor 1 0.16 0.36 0.62 1.19 2.46

Bids Placed 356 9 35 137 390 810
Average Bid 4140 742 1322 2760 4684 9539
Lots Won 137 3 18 55 147 328
Average Payment 4571 541 1332 3033 5881 9684

Note: Statistics are calculated by food bank, then quantiles are evaluated across food banks. The

mean Goal Factor is normalised to 1. Population and Poverty figures refer to the number of people

in a food bank’s catchment area.

3.1 Evidence of Heterogeneity

Under the Old System every food bank was, ex ante, offered the same allocation. If

food banks have heterogeneous needs, unknown to the social planner, welfare might

be increased by allowing food banks greater choice in their allocations. Therefore

heterogeneity is a key determinant of the value of choice. To investigate heterogeneity

I demonstrate how average bids or winning bids vary over types of food, over food

banks, and within food banks over time. I consider a series of simple reduced form

fixed effects regressions, controlling for lot composition, distance, and the censoring

caused by the reserve prices and entry behaviour using a Tobit specification.

3.1.1 Differences Across Lots

Figure 3 plots average winning bids across subcategories, demonstrating that different

types of food attract significantly different bids. These differences cannot only be

explained by differences in supply, requiring demand side factors to explain them also.

For example, Cereal is abundant and sells for relatively high prices, while Health and

Beauty products are rare but sell for lower prices. It is clear there is a great deal of

heterogeneity between lots, and that these lots cannot be substituted one for one.

3.1.2 Differences Across Food Banks

Food banks differ vastly in terms of their total consumption: Five food banks receive

the same amount of food as 122 food banks who receive the least food from Feeding

11



Figure 3: Heterogeneity in Lots

Note: Plots mean winning bids, and 95% robust confidence intervals, across subcategories, control-

ling for censoring and lot composition. Coefficients are ordered and coloured according to category.

America. However, these food banks are also choosing very different types of food.

These 122 food banks, in total, spend 4 times as much as the five high consumption

food banks. Therefore these five food banks are choosing to receive much cheaper

food. This is likely because they rely on Feeding America for their staples, having

fewer local donors than the other 122 food banks.

Figure 4 plots average bids across food banks and across different types of food

according to how they are stored. Estimates are negative and large due to the degree

of non-entry — the average food bank bids on only 2% of lots. There are three main

takeaways: First, there is significant heterogeneity in average bids across food banks.

Second, there is heterogeneity in average bids within food banks, across types of food.

Third, that these two types of heterogeneity are not perfectly correlated: For some

food banks average bids on Tinned food are higher than average bids on Dried food,

but for other food banks this relationship is reversed.

3.1.3 Differences Over Time

To investigate the variation in bidding behaviour over time I run the same Tobit

specification as above, considering how average bids vary from month to month. I

focus on only those food banks who win at least 100 lots over my sample period.

I then consider the degree of variation in my estimated parameters. A likelihood
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Figure 4: Heterogeneity Across Food Banks

Note: The figure plots coefficients and 95% robust confidence intervals from regressing food bank ×
storage type on bids, controlling for distance and censoring/non-bidding. Food banks are ordered

by average bids on Dried food (the blue points monotonically increase from left to right). I include

results for those who won at least 50 lots.

ratio test that parameters are constant over time is rejected at 5% significance level

for 96% of food banks. This is indicative of systematic heterogeneity in food banks’

needs over time. Additional results are reported in Appendix B.

3.2 Stylised Facts

I now investigate several stylised facts which point towards key determinants of bid-

ding behaviour, motivating the model’s key features. I have already emphasised the

role of several types of heterogeneity that will become important features of my model.

3.2.1 Negative Bidding

Negative bidding is common: 34% of bids are negative. Furthermore, with a negative

reservation price non-entry only happens when food banks have negative marginal

valuations, when food banks must be paid to accept certain loads. This occurs in

98% of bidder × lot combinations. Negative valuations likely occur because of limited

storage capacity, as emphasised in Prendergast (2017).10 They cannot throw away

10Storage costs include the opportunity cost of volunteer time and effort from repackaging and
properly storing the food. Transportation costs are also a key factor in these negative valuations.
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excess (non-expired) food as this sends a bad signal to donors.

3.2.2 Dynamic Complementarities

Figure 5 panel (A) demonstrates that, conditional on winning food of a particular

type at time 0, the probability of bidding on lots of the same type falls by 35% (3 pp)

on subsequent days.11 As food banks win more of a particular type of food, the less

they are willing to pay for an additional lot from that type. Because food banks are

known to be forward looking, this evidence of ‘dynamic linkages’ highlights the need

to model dynamics. Food banks treat this food as a storable good, working through

their current stocks before returning to bidding on the Choice System.

Figure 5: Evidence of Dynamic and Static Complementarities

(A) (B)

Note: The figure demonstrates evidence of both dynamic and static complementarities. Panel (A)

plots the probability of placing at least one bid on a particular type of food, conditional on winning a

load of that type of food at time zero. The probability at zero is normalised to the long-run average

to demonstrate scale. Panel (B) plots the probability of bidding on a given lot, as a function of

the number of lots available from the same storage type. The dotted line gives the unconditional

probability of bidding on a given lot. Both plots include food bank × storage type fixed effects, and

condition on the type of food being available. The grey area plots 95% robust confidence intervals.

11This could be caused by transportation costs or budget constraints. The same can also be said
for panel (B) discussed shortly. However, conditional on winning one type of food we see only a 3%
drop in the bidding probability on different food. If it were about budget constraints, we should see
the same relationship irrespective of the type of food.
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3.2.3 Static Complementarities

Figure 5 panel (B) demonstrates that, for a particular type of food, as the number

of lots auctioned on a given day increases, food banks bid on a smaller proportion

of lots. If payoffs were additively separable we would see a horizontal line. This

suggests that lots exhibit a negative complementarity (substitutes) within a storage

type — they do not want to win more food than they can afford to store. I cannot

treat auction pay-offs as additively separable, and must instead take a multi-object

approach, accounting for the simultaneous auction environment.

4 The Model

I now present the model of food banks bidding on the Choice System. Section 4.1

introduces the environment and primitives then 4.2 outlines the agents’ dynamic op-

timisation problem. Section 4.3 discusses equilibrium and 4.4 considers identification.

4.1 Market and Primitives

Each period t over an infinite horizon, N food banks compete in up to L first-price

auctions. Food banks are denoted by i and lots by l. a denotes the combination

outcome from a round of auctions, i.e. the combination of lots each food bank won.

4.1.1 Auction Environment

Players simultaneously choose which lots to enter and what to bid. Entry decisions

consist of an L dimensional vector dit. Entry ditl = 1 if they enter lot l, ditl = 0

otherwise. Each player plays an L dimensional vector of bids, denoted bit, with

bitl = ∅ if ditl = 0. Bids must weakly exceed the reservation price, so that bitl ≥ Rtl

if ditl = 1. Auctions are costless to enter. Winners are announced simultaneously.

Winners pay their bids, and every player observes the identities and bids of winners.

Each lot is characterised by a row-vector of characteristics ctl, consisting of the

the location, size, categories (c), subcategories (h), and storage method (g) of the lot.

The pounds in each lot from each category/subcategory/storage method is denoted

by
{
zctl, z

h
tl, z

g
tl

}
, so that if i wins lot l their stock of food from each category increases
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by zctl. For notational convenience I absorb these variables into the common state

variable s0t. I make the following assumption about the common state variables:

Assumption 1. s0t follows an exogenous Markov process, drawn from F 0(.|s0t−1).

This assumption ensures that supply and lot characteristics are exogenous. This

requires that supply does not react to prices in the Choice System.

4.1.2 Primitives: States and Transitions

Food bank i begins the period in state sit ∈ S. This represent the food bank’s current

stock of food. I primarily focus on their stocks from each storage method, so that

the individual state has 4 dimensions.12 This captures the dynamic costs of holding

storable goods. If the outcome from period t is a they end the period in state sait.

sit = sait if and only if the player does not win a single lot. Writing wit as i’s winnings

from period t I make the following assumptions about how stocks transition:

Assumption 2. (i) Each period sit+1 is drawn from distribution F s
i (sit+1|sit + wit)

(ii) E[sit] = 0

(iii) For any winnings wit we have that: E[g(sit)|wit, sit+1] = 0 implies g(sit) = 0

for any real bounded function g.

Individual states are not observed. Day-to-day variation in stocks is likely a major

source of variation in bidding behaviour. Food banks supplement their stocks of one

type of food they have not recently received from local donors with food from Feeding

America. The random variable sit is observed each morning before items are posted

on the Choice System, and depends on the stocks and winnings from the previous

period. The random component of the stock process can be interpreted as the net

daily change in food banks stocks — the food received from local donors, less the

food taken by clients. This transition process incorporates the crucial assumption

that food received from Feeding America, and food from local donors, are perfect

substitutes. This is a necessary scale normalisation. Part (ii) of the assumption

is a location normalisation, as only changes in stocks are identified. Part (iii) is a

12I also focus on their stock of each subcategory h in order to capture food banks’ preferences
over how the food is used. However, I will assume that payoffs are affine in subcategory stock (not
subject to diminishing returns — food banks always have people to feed), meaning that the level of
the stock of each subcategory is neither identified nor welfare relevant (up to normalisation).
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high-level ‘completeness’ condition needed for identification, akin to an instrument

relevance condition. It essentially requires that, given wt, the distribution of stocks

at t+ 1 can be inverted to give the distribution of stocks at t.

4.1.3 Primitives: Payoffs

Following Altmann (2022) and Gentry et al. (2023) I decompose the flow payoff into

a stochastic lot-specific component and a deterministic function of stocks:

Assumption 3. (i) If food bank i ends the period with stocks sit, they receive payoff

πi(sit). The deterministic function π : Si → R is finite, with π(0) normalised to 0.

(ii) If i wins lot l in period t they receive payoff υilt, where (stacking over l)

υit ∼ F υ
i is a random variable, known privately, observed before entry, and drawn

independently across i and t, with E[υit|st] = 0.

(iii) Payoffs are quasi-linear in shares (virtual currency).

The flow payoff function π captures both the costs of storing food, and the util-

ity from holding various types of food to be able to distribute them to clients. Part

(ii) embeds two assumptions. Assuming the privately known υit is conditionally inde-

pendent across individuals imposes independent private values. Assuming conditional

independence across time is a standard assumption in most dynamic models. The

mean independence assumption is required to separately identify F υ
i and πi, where

the mean on υit is treated as an element of π. The assumption that π has finite range

is predominantly for mathematical convenience, while the normalisation is required as

only marginal payoffs are identified. Quasi-linearity is standard in empirical auction

studies.13 However, I allow food banks to differ in their marginal value of wealth,

given by λi > 0, capturing that some food banks receive more shares than others,

and that some food banks rely on the Choice System more than others.14

13Altmann (2024) shows that quasi-linearity is observationally equivalent to a model with an
inter-temporal budget constraint in a stationary environment. In this case, day-to-day fluctuations
in budgets or stocks do not significantly impact expectations about how valuable accessing food
from Feeding America will be in future, so the marginal value of wealth is constant over time.

14This is important for analysing the distributional consequences of choice. Usually, λi are
equalised across bidders, enabling inter-bidder welfare comparisons. Instead, I assume the vari-
ance of υilt, conditional on lot characteristics, is constant across food banks, equalising variance
in the unmodelled variation in lot specific attributes. This is similar to the decision of whether to
normalise the variance or one coefficient in binary choice models.
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I also assume players have temporally additively separable preferences, and make

forward looking decisions with discount parameter β = 1, so that food banks are

extremely patient.15 I assume F , π, s, and β are common knowledge.

4.2 The Agent’s Problem

A pure strategy consists of a mapping from a player’s type and the state of the world

onto entry decisions and bids (dit,bit). Ex-ante a player’s strategy, Λi, admits a

distribution of bids according to Fi, πi and s.

4.2.1 Beliefs

Denote Γil(b,d; Λ−i) player i’s belief about the marginal probability of winning lot

l, given their bid and entry decision and the strategies of other players. Denote

Pia(b,d; Λ−i) i’s belief about the joint probability, conditional on (b,d,Λ−i), that

the combination outcome from the round of auctions is a. Γ and P constitute food

banks’ beliefs about other players’ behaviour. In section 5 I make assumptions about

these beliefs to make estimation feasible.

4.2.2 Value Function and Continuation Value

Assuming risk neutrality the Bellman equation is given by:

W (υ, s; π,Λ−i) = max
b,d

{
W̄ (b,d;υ, s, π,Λ−i)

}
Where W̄ (b,d;υ, s, π,Λ−i) =

∑
l

Γl(bl, dl; Λ−i)(υl − λibl)︸ ︷︷ ︸
lot specific

+
∑
a

Pa(b,d; Λ−i)[π(sai ) + β

continuation value︷ ︸︸ ︷∫
s̃

∫
υ̃

W (υ̃, s̃;π,Λ−i)dF
υ
i (υ̃|s̃)dF s(s̃|sa)]︸ ︷︷ ︸

combination specific

The continuation value gives the expected pay-off from the start of the following

15This was motivated by conversations with food bank managers. β = 1 requires a (large) finite
dependence assumption, implied by stationarity of the equilibrium process, to ensure the difference
between the value function at any two distinct states converges. Therefore, just as we have to do
for the payoff function, the value function for one state must be normalised to zero.
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period having ended the current period in state sa. This can be written as follows:

V (sa; Λ−i) =

∫
s̃

∫
υ̃

W (υ̃, s̃; π,Λ−i)dF
υ
i (υ̃|s̃)dF s(s̃|sa)

A further important object is the sum of the deterministic payoff function and the

discounted continuation value, denoted κ(s; Λ−i) = π(si) + βV (s; Λ−i). I refer to

κ as the ‘Pseudo-Payoff’ function. This is essentially what we would estimate if

we incorrectly assume bidders are myopic. Estimating this function is key to my

estimation procedure. The importance of this object arises because the value function

(and hence the continuation value) can be written as functions of these pseudo-payoffs:

W (υ, s; π,Λ−i) = max
b,d

{∑
l

Γl(bl, dl; Λ−i)(υl − λibl) +
∑
a

Pa(b,d; Λ−i)κ(sa; Λ−i)

}
(1)

4.3 Equilibrium

I focus on symmetric Markov Perfect Equilibria (MPE), defined as follows:

Definition 4.1. : An MPE consists of a set of strategies Λ∗ and beliefs Γ(Λ∗), such

that for any (υ, π, s):

Optimality: (bΛ∗

i ,dΛ∗

i ) = arg max
{
W̄ (b,d;υ, s, π,Λ∗−i)

}
Consistency: Γil(bil, dil; Λ∗−i) = I[dil = 1]P (bil > max

i′ 6=i
{bi′l} |Λ∗−i)

The optimality condition requires that agents maximise the net present value of

payoffs. The consistency condition requires that bidders’ beliefs are consistent with

the observed distribution of winning bids. This also requires bidders’ beliefs about

P are consistent with observed joint probabilities. Symmetry requires that bidders

with the same ‘type’, and the same beliefs, place the same bids. This allows us to

write the equilibrium strategies as a function of the state: Λ∗ = Λ(s).

Altmann (2022) proved that, conditional on existence of a symmetric Pure Strategy

Nash Equilibrium in the bidding game conditional on entry, such an equilibrium

exists.16 I make the following assumptions about equilibrium:

16Many papers have also studied sufficiently complex auction games in which neither existence
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Assumption 4. (i) The data are generated by strategy profile Λ∗, a symmetric MPE

of the dynamic auction game.

(ii) ∀ i, l, and bil > Rl, Γil(bil, 1|s) is strictly increasing and differentiable in bil.

(iii) ∀ i and si the Hessian of the pseudo-payoff function κ has full rank.

Part (i) is standard, ensuring that the observed data are generated by a stationary

process. This embeds the stronger assumption that, in equilibrium, food banks’

states do not trend upwards or downwards.17 Part (ii) ensures that standard first

order conditions are necessary for optimality, ensuring point identification. I allow

for ties at the reservation price, which imply non-differentiability of Γ at R. Part (iii)

is needed for identification: Conditional on the pseudo-payoff function κ it allows the

first order conditions to be inverted for si.

4.4 Identification

Altmann (2022) proves that πi and F υ
i are non-parametrically point identified from

the observed distribution of equilibrium bids conditional on state variables. The diffi-

culty, when we do not observe stocks, is that we must identify a non-linear function of

this unobserved variable π, as well as the transition process for the unobserved vari-

able F s. Previous work on storable goods models have only discussed identification

informally (see, for example, Hendel and Nevo (2006)).

Instead, I prove that the model is non-parametrically point identified building

on the framework developed in Hu and Shum (2012). This approach employs an

argument based on the spectral decomposition of linear operators, building on Hu

and Schennach (2008)’s work on identification of measurement error models. In this

setting, the central idea is that the joint distribution of bids and winnings act as

a noisy signal of the unobserved states, in that winnings are an observed change

in the unobserved stocks. The joint distribution of this noisy signal over time can

then be decomposed to separately identify the conditional bid distribution and the

nor uniqueness of equilibrium can be guaranteed, including Gentry et al. (2023) on simultaneous
first-price auctions, Fox and Bajari (2013) on simultaneous ascending auctions, and Jofre-Bonet and
Pesendorfer (2003) on dynamic auctions. Therefore, I do not consider this a first-order problem.

17I require that the distribution of local donations and food sent to clients is constant over my
3 year period. Feeding America’s ‘Hunger in America’ resource shows that food bank usage and
food insecurity remains stable in this time. Meanwhile, Altmann (2024) demonstrates that the
distribution of bidding behaviour does not vary over the long term, only over the short term.
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stock process, from which Altmann (2022)’s results apply. I require two additional

invertibility assumptions akin to “instrument relevance” conditions:

Assumption 5. (i) For any set of available lots s0t we have that: E[g(st)|s0t,bt] = 0

implies g(st) = 0 for any real bounded function g.

(ii) For any s0t+1 there exists a pair (s0t,wt) and a neighbourhood (W̄, S̄0) around

(wt, s0t) such that for any (w̄t, s̄0t) ∈ (W̄, S̄0) we have: E[g(bt+1)|s0t+1, w̄t, s̄0t,wt−1] =

0 implies g(bt+1) = 0 for any real bounded function g.

These assumptions are standard ‘completeness’ conditions, the non-parametric

analogue of the rank conditions required in linear regression and instrumental variable

models. For example, Newey and Powell (2003) and Berry and Haile (2014) make

similar assumptions for the identification of non-parametric instrumental variable and

demand models respectively. Part i) requires that, for any set of available lots, bids

are associated with ‘enough’ variation in current stocks to enable inversion of the

conditional bid distribution. Part ii) requires that, for some wt, variation in past

winnings wt−1 still create ‘enough’ variation in future bids bt+1 to pin down any

function of these bids. Parts ii) is testable in principle, and is essentially the same

variation plotted in Figure 5 panel (A).

These assumptions enable proof of the following proposition:

Proposition 1. Under Assumptions 1-5 the distribution of idiosyncratic payoffs F υ
i ,

the flow-payoffs πi, and the stock process F s
i are non-parametrically point identified.

Proof is given in Appendix C. The proof is omitted for brevity as it requires formal

definition of linear operators and their spectral decomposition. The proof follows a

simplified version of Hu and Shum (2012)’s argument, exploiting the exclusion re-

striction that, conditional on st, bt is independent of wt−1. This means I require

weaker completeness conditions than their argument, as well as weaker normalisa-

tions because of how my signal (winnings) impacts the unobserved state in a known,

additive, way. Because stocks are continuous and multi-dimensional, the argument

requires the same of bids, so requires the (simultaneous) auction environment. For

this reason, their argument has not been applied in other storable goods models.

4.4.1 Intuition Behind Identification

It is valuable to consider intuitively how we separately identify πi and F s
i . Identifica-

tion of the remaining objects is standard. The argument rests on the reduced form
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relationships plotted in Figure 5 and requires a panel of data for each food bank.

First, variation in the size and composition of lots available (i.e. choice sets),

and how this impacts bidding behaviour, identifies the flow payoff function π. If a

food bank generally receives high payoffs from holding a particular type of food, e.g.

cereal, then the food bank will generally bid frequently on cereal. However, if the

food bank also faces convex storage costs for dried food, then when there are many

loads of cereal available the food bank may bid on only few of them. They do not

want to win too many loads of cereal or face excessive storage costs. This is precisely

the behaviour seen in practice in Figure 5 panel (B): When there are ten lots of dried

food available food banks bid on a given lot with 3.5% probability (0.35 bids per

round). But, when there are thirty lots available they only bid with around 1.3%

probability (0.4 bids per round). We can also identify cross substitution effects from

variation in available lots of one type on bids of a different type.

Second, variation in a food banks’ winnings, and how this affects their subsequent

bidding behaviour, identifies their stock process. This is the relationship plotted in

Figure 5 panel (A). If a food bank’s clients generally take much more cereal than the

food bank receives from local donors, then after winning cereal their propensity to bid

will not change substantially. They know they will give out this extra load quickly

and immediately need more. On the other hand, if they take several days to give out

a load of cereal then they may stop bidding on cereal and similar dried foods while

their stocks are high, to avoid increased storage costs. Furthermore, the persistence

of this change in behaviour identifies how much influence the food bank has over their

net donations. If they have a lot of influence then after winning cereal they can give

out more cereal to clients and request less from donors. Their stocks quickly return to

normal levels, and so bidding behaviour also bounces back quickly. However if they

have only limited control then they are unable to shift the extra cereal any faster

than usual, keep receiving the same types of food from local donors, so their bidding

behaviour takes longer to recover. In practice we see this type of persistence.

5 Estimation

I now describe my estimation procedure, which builds on Altmann (2022) to allow

for the unobserved stocks. Section 5.1 outlines this three step procedure. While

Altmann (2022) proposed a non-parametric procedure, this is inapplicable in the

22



presence of unobserved stocks and so I take a fully parametric approach. Section 5.2

discusses parametrisation and estimation of beliefs. Section 5.3 discusses the second

estimation step, in which I simultaneously estimate the stock transition process, the

distribution of lot-specific values, and the pseudo-payoff function. In section 5.4 I

discuss disentangling the flow payoff π and the discounted continuation value from

the pseudo-payoff κ. Additional details are given in Appendix F.18

5.1 The 3-Step Procedure

The standard approach to estimating dynamic auction games, from Jofre-Bonet and

Pesendorfer (2003), relies on the ability to write the value function as a function of

the distribution of bids only. This requires that bid functions are invertible, just like

how Hotz and Miller (1993) and Bajari et al. (2007) require that policy functions are

invertible. Invertibility fails in the multi-object context because of an order problem:

Bids are L dimensional, while values, and continuation values are 2L dimensional.

Instead, Altmann (2022) introduces an estimation procedure that does not require

invertibility. They demonstrate that we can write the value function as a function

of the distribution of bids and ‘pseudo-static’ payoffs, as we did in equation 1. If

we ‘know’ these pseudo-payoffs we can evaluate the value function, and hence the

continuation value, which then allows us to back out the flow payoff π from the

definition of the pseudo-payoff: κ = π + βV . To estimate the pseudo-payoff function

we estimate the model almost as if we were estimating a misspecified static model.

In a single-object environment this procedure collapses down to Jofre-Bonet and

Pesendorfer (2003), while in a single-agent discrete choice environment it is numeri-

cally equivalent to Hotz and Miller (1993). This is because, when the policy function

is invertible there is a one-to-one relationship between the policy function and the

pseudo-payoff function. Both these methods, as well as Bajari et al. (2007)’s proce-

dure, involve first estimating non-primitive objects (conditional choice probabilities,

policy functions, and bid distributions), before using these objects to back out the

continuation value. Altmann (2022)’s procedure is similar, but uses estimates of the

18Due to computational requirements I focus my analysis on the 90 food banks that each won
at least 50 lots. These food banks consume 94% of the food from the Choice System. Because
heterogeneity is an important theme of the model I generally estimate separate parameters for each
food bank. However, I lack sufficient identifying variation for each individual food bank. I use a
Bayesian Hierarchical framework to flexibly introduce information pooling across bidders.
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pseudo-payoff function for this purpose.

5.2 Step 1. Beliefs

Assumption 4 ensures food banks form beliefs consistent with observed play. There-

fore, we can estimate beliefs using the observed distribution of winning bids without

solving the model for equilibrium (Athey and Haile, 2007).

I make three additional assumptions to simplify estimation. First, without addi-

tional assumptions the continuation value for food bank i depends on the state of

every food bank, creating an infeasibly large state-space. However, s−i only enters

the continuation value of player i through Γ(.|st+1). As the number of bidders grows

the probability of any individual and their stocks influencing the distribution of prices

falls to zero. To formalise this, I assume that beliefs do not depend on the states of

individual food banks. Instead they only depend on aggregate statistics of st through

a demand index ϑt, detailed shortly.19 This assumption is tested on the empirical

equilibrium winning probabilities in Appendix H.1.

Second, I assume that, in equilibrium, food banks believe winning one lot is con-

ditionally independent of winning any other lot. Equivalently, that winning bids are

conditionally independent across auctions, simplifying estimation considerably. In

Appendex H.1 I test and present support for this simplification. This allows me to

write the combination win probabilities P as products of the marginal probabilities.

Finally, I make flexible parametric assumptions about Γ to facilitate estimation.

Because winning bids can be considered the maximum of several conditionally inde-

pendent variables I assume winning bids follow a generalised extreme value distribu-

tion, censored at the reservation price:

Γil(.|s) = GEV (.; ξc, ζc, c
T
ltµ+ ϑlt) where ϑlt = sT0tϑ (2)

Where the shape and scale parameters ξ and ζ are category specific. clt gives a vec-

tor of lot specific location shifters, such as the subcategory composition. ϑlt describes

how the distribution varies with the state of the world, forming a demand index to be

19This assumption is similar to the large market Oblivious Equilibrium (Weintraub et al., 2008)
and Moment-based Equilibrium (Ifrach and Weintraub, 2017). Backus and Lewis (2024) employ a
similar assumption. They argue that because there are many competitors it is unlikely that bidders
follow the identities of which other bidders are likely to bid at any given time, and their states. It
is unlikely that any given food bank keeps track of competitors’ states.
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estimated. This index is a linear function of the quantity of food, by type, auctioned

at t and also over the previous 30 days up to t − 1. This captures the competitive

pressures on prices: If little food has been auctioned over the previous month then

on average food banks’ stocks will be low, and we expect higher prices. Full details of

how I estimate beliefs are included in Appendix F.1, including additional covariates

and how I estimate the probability of tieing at the reserve price.

5.3 Step 2. The Pseudo-Static Model

I now describe the second part of the estimation procedure, in which I jointly esti-

mate F s, F υ, and κ for each food bank. The central difficulty concerns the unobserved

state and the unobserved bids, as bids are unobserved when food banks do not enter a

particular auction. I estimate the model using a Gibbs Sampler. I use data augmen-

tation to iteratively sample both unobserved bids and unobserved states from their

conditional posterior distributions, before updating my parameter estimates given the

augmented data. Full details of the estimation procedure, including assumptions on

prior distributions, are given in Appendix F.2.

5.3.1 Stock Process

Stock transitions follow sgit+1 = sgit + wg
it + xit+1, where xit+1 gives the daily local

donations minus food taken by clients. I assume xit+1|sgit ∼ N(δi[s
g
it + wg

it] + µi,Σi).

This process incorporates only a simplified form of feedback from a food banks’ stocks

to their net donations, as this process is difficult to identify. The feedback parameter

δi controls the responsiveness of a food banks’ net donations to their previous stocks,

while µi controls the unconditional average. I impose δi to be a diagonal matrix,

with entries δig ∈ [−1, 0] to ensure stationarity. When δig = 0 the food banks’ net

donations are strictly exogenous, whereas when δig < 0 they have some control over

their net donations: The higher their stocks, the more of that type of food they send

out to clients, and the less of that type of food they procure from local donors.20

This stock process is therefore essentially an Auto Regressive process, with autore-

gressive coefficient (I+δi), drift µi, and noise x̃it+1 ∼ N(0,Σi). Unlike other storable

20The previous version of this paper imposed δ = 0, so that net donations were strictly exogenous.
I can reject δ = 0 for most food banks. As predicted, allowing δ < 0 leads us to estimate larger
welfare benefits of choice as food banks can focus their consumption from Feeding America on the
types of food they cannot so easily procure from local donors.
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goods models I assume stocks do not exogenously decay over time.21 Seasonality is

indirectly captured through variation in stocks over time, as net donations may be

lower in winter when demand for food banks is high.22 The normality assumption is

reasonable for these large food distributors receiving many donations from many dif-

ferent sources, and sending out food to many different food pantries. I estimate food

bank × storage type specific feedback, mean and variance parameters (δig, µig,Σig).

5.3.2 Lot-Specific Payoffs

I assume υilt ∼ N(αidistanceilt, σ
2
l ), so that the mean lot specific payoff depends

linearly on the distance between food bank i and lot l. The variance σ2
l is category

combination specific. Assumption 3 requires that the lot specific pay-offs are un-

correlated across t and i. To simplify estimation I also assume these variables are

conditionally uncorrelated across lots l.

5.3.3 Combinatorial Payoffs

I fit a parametric form to the pseudo-payoff function κ(si, s0). To make estimation

feasible I impose a quadratic form, ensuring that inverse-demand is affine in the

unobserved stocks. This is similar to standard assumptions of quadratic storage costs,

albeit closer to an opportunity costs of storage. Allowing for non-linear demand

would require use of multidimensional particle filters, which exponentially increase

the computation and memory requirements of estimation. Within these constraints,

I choose a parametric function to reflect how food banks gain benefits from food

according to how the food is used (depending on the subcategory) and how they face

costs of storing the food (depending on the storage method). I assume the following:

κi(si) = Φis
h
i − sgTi Ψis

g
i (3)

21I would not be able to separately identify a decay parameter from δ. This assumption was
motivated by discussions with food bank volunteers. Most of the donated food, even fresh produce,
have long shelf lives, so that any daily decay parameter is close to 1.

22This process does not capture how food banks may begin buying extra food in advance of win-
ter, predicting how demand for their services will change. This behaviour will instead be rationalised
by stocks falling in advance of winter. Explicitly modelling seasonality is infeasible as it drastically
increases the state space, since behaviour depends on how long is left until winter. Ignoring pre-
cautionary consumption should bias my results in favour of the Old System, since precautionary
consumption is far easier under the Choice System.
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Where Φi is an 1× 152 row vector, and Ψi is a 4× 4 dimensional matrix (constrained

to be positive), sgi gives the food bank’s stock of each storage type and shi their stock

of each subcategory. This form imposes that the benefit of holding food to give out

to clients, which comes through shi , does not exhibit decreasing marginal returns.

Meanwhile the opportunity cost of storing food is increasing and convex in sgi , so that

Ψ controls both the dynamic and static complementarities across lots.23

5.3.4 Estimation procedure

The model presented above leads to necessary optimality conditions for bidding which

can be inverted for the Inverse Bid System, ξilt(b,d|si, s0). Derivation of this system

is given in Appendix D. This gives us the following three equation model, consisting

of a ‘Transition Equation’, an ‘Observation Equation’, and a ‘Censoring Equation’:

sgit = (I + δi)[s
g
it−1 + wg

it−1] + µi + x̃it → Transition Eq.

λiyilt = Φiz
h
tl − zgTtl Ψi(z

g
tl + 2sgit + 2

∑
m 6=l

Γm(bitm)zgtm) + υilt →Observation Eq.

y∗itl =


bitl + Γl(bitl)

∇bΓl(bitl)
if bitl > R

R + Γl(R+1)
Γl(R+1)−Γl(R)

if ditl = 1, bitl = R

R if ditl = 0

→Censoring Eq.

(4)

The observation and censoring equations come from the inverse bid system, while

the transition equation was defined in Section 4. Importantly, the Observation Equa-

tion is affine in the unobserved state sgit. Therefore the model is a case of a Censored

Linear Gaussian State-Space model.24

23κ should depend on s0, capturing how the continuation value depends on beliefs about future
supply. I treat κ as independent of s0 for several reasons. First, the supply of shares varies with
supply to ensure prices remain approximately constant. However, relative prices may still vary.
Second, I show in section 6.1 that the relationship between supply of different types of food and their
prices is not economically significant. Finally, in Appendix H.2 I present results from a specification
that includes the demand indices ϑltg as inputs to κ and find that these generally have no impact.

24bitm may be correlated with υitl, creating endogeneity in the Observation Equation. When υitl
is large i may prefer to win lot l instead of lot m, lowering their bid on lot m. Results in Altmann
(2022) and simulations suggest the resulting bias is very small, as Γim(bitm) is generally unresponsive
to υitl, depending much more on υitm, zitm and even zitl. In Appendix H.2 I use the instrumental
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The likelihood for this model intractable. Instead, estimation is performed using

a Gibbs Sampler, which consists of repeating the following steps:25

1. Draw beliefs Γ from their posterior distribution using Metropolis Hastings

2. Given Γ, the parameters of the pseudo-static model {ki, F υ
i , F

s
i }N , and states

{sgit}T,N , draw censored values of {yilt}NTL using the Censoring Equation

3. Given Γ, {ki, F υ
i , F

s
i }N , and {yilt}NTL, use the Carter-Kohn Algorithm to draw

{sgit}T,N using the Transition and Observation equations.

4. Given Γ, {yilt}NTL and {sgit}T,N , draw {ki, F υ
i , F

s
i }N by running bayesian re-

gressions on the Transition and Observation equations.

5.4 Step 3. The ‘Dynamic’ Game

At this point we have draws of beliefs, {κi, F υ
i , F

s
i }N , and {sgit}T,N from the posterior

distribution. In order to evaluate the continuation value V (sgi , s0) I make use of the

following proposition:

Proposition 2. The ex-ante Value Function can be expressed as:

E[W (υit, si, s0)|si, s0] =
E[qt(s

g
i )W̃ (bit,dit|sgi , s0)|s0]

E[qt(s
g
i )|s0]

Where qt(s
g
i ) gives the posterior probability that sgit = sgi and

W̃ (b,d|si, s0) =
∑
l

λi
Γl(bl, dl; s0)2

∇bΓl(bl, dl; s0)
+
∑
m6=l

Γl(bl, dl; s0)zgTl Ψiz
g
mΓm(bm, dm; s0)− sgTi Ψis

g
i

This proposition is proven in Appendix E.26 The identity W̃ (b,d|si, s0) follows

from Altmann (2022), substituting the first order conditions back into the maximand,

writing the ex-ante value function as a function of bids and the pseudo-payoffs. The

variable procedure of Altmann (2022) to demonstrate evidence of negligible bias.
25Recognise how this procedure builds on the identification argument presented in 4.4. In step 3.

I use variation in winnings and the effect on bidding behaviour to infer changes in stocks, pinning
down the distribution of net donations. In step 4. I use variation in zt as well as winnings (through
the sampled states), and how these impact bidding, to pin down κ.

26The version of the proposition I prove also includes an adjustment for binding reservation prices.
This is excluded from the text for ease of exposition.
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main proof extends results from Arcidiacono and Miller (2011) to the continuous

choices. The sample counter-part to this object is then easily found. See Appendix

F.3 for full details of this procedure. I evaluate the value function across a 304 grid

of stocks, evaluated evenly across points from the posterior sampled states.27

Having evaluated the ex-ante value function for a parameter draw, I evaluate

the continuation value using V (si, s0) =
∫ ∫

E[W (υ, s̃i, s̃0)|s̃i, s̃0]dF (s̃0|s0)dF (s̃i|si).
Finally I back out π(si) = κ(si, s0)− βV (si, s0).

6 Estimation Results

This section discusses the results from the three stages of estimation described in

section 5 as well as how well the model fits the data. Only a small number of key

results are reported in the text, focusing on the theme of heterogeneity. Additional re-

sults are reported in Appendix G, including the Gelman-Rubin convergence statistics.

When discussing statistical significance I focus on 95% credible intervals.

6.1 First Stage Results

The key first stage parameters are the shape, scale, and location parameters that

describe the generalised extreme value distribution. The shape parameters lie signifi-

cantly within the interval (−0.1, 0.5), with none of the parameters significantly below

zero. The scale parameters are all between 2000 and 5000. The implied variance is

much higher than the variance of winning bids. This variation is needed to rationalise

the relatively high likelihood (≈ 0.3) of winning at the reservation price.

The estimated subcategory fixed effects are precisely estimated, widely dispersed,

and strongly correlated with the average winning bids across subcategories presented

in Figure 3 (ρ = 0.829). The previous 30 days supply of food has a significant negative

effect on prices for most types of food. Each additional increase in the previous 30

day supply by one hundred loads (≈ 1sd) decreases the winning bid by 350 shares.

This magnitude, while statistically significant, is not economically significant (around

27Such a large grid is feasible in this context as I only need to perform the procedure once.
However, storing 85, 000 grids, one for each food bank × parameter draw, is not. I use a quadratic
approximation of the ex-ante value function. In Appendix H.3 I evaluate the fit of this approximation
by considering the R2 of the approximation regression. 100% of these R2s lie between 0.9 and 1.
The fit is strong due to the quadratic term that appears in the ex-ante value function.
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0.017 standard deviations), relative to the variation seen across different types of food

through the subcategory parameters. Given the money supply varies with the food

supply to ensure prices remain stable over time, this is unsurprising.

6.2 Second Stage Results

Unobserved State

Figure 6: Estimated Standard Deviation of Net Donations

Note: The figure plots posterior means of standard deviations of net local donations, as well as 95%

credible intervals. Results are sorted according to the estimates for the Dried storage type.

Figure 6 plots estimates of the standard deviation of food banks’ net donation
√

Σi

parameters. 95% credible intervals are also plotted. Estimates are sorted according

to the estimates for the Dried food type.

There are two key takeaways from this plot: First, the extent and significance of

the heterogeneity across food banks. Some food banks have much more variable net

donations than others, with estimates varying by a factor of 30. We see both vertical

and horizontal variation. The second takeaway concerns the scale. The average load

of food is around 10 tons, and around half of food banks’ net donations vary by more

than this each day. Therefore, there is a lot of heterogeneity in the types of food

each food bank wants from Feeding America on any given day. Decomposing the

unexplained variation in bidding behaviour between F υ and F s, around 93% of the

unexplained variation in bidding behaviour is from variation in unobserved stocks.
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Results for mean net donations µi and the feedback parameters δi are presented

in the same format in Appendix G. While precisely estimated, only 18% of the µi

parameters are significantly different from zero (95%), predominantly for food banks

who are observed almost always bidding on the same types of food.

Meanwhile, around half of the feedback parameters δ are estimated to be above

−0.1, suggesting that most food banks have very little control over their net donations,

and that their stocks exhibit a large degree of persistence.28

Lot-Specific and Pseudo-Payoffs

Distance coefficients vary across food banks from a cost of 5 to 120 shares per mile,

with an average of 39. These figures are higher than the figure from Prendergast

(2022) of around 0.16 shares per mile. However the figures are not directly compara-

ble, as Prendergast takes this figure as the coefficient from a regression of distance on

the observed winning bid. When I perform this exercise I find a coefficient of 0.14,

which is extremely similar. The difference arises as my analysis includes losing bids

and also accounts for both bid shading and endogenous entry.

I estimate significant heterogeneity in the estimated willingness to pay for food

(= κi(sit + zilt) − κi(sit)) across different types of food, across different food banks,

and within food banks across time. The posterior mean average willingness to pay

is -50,600 (± 2,400). This figure varies from -71,500 to -14,800 across different types

of food, from -195,000 to 30,200 across food banks, and from -116,000 to 46,600

over time. It is difficult to compare these measures to previous estimates of demand

elasticities for food given the specific setting of large food banks using fake money to

pay for food, rather than consumers purchasing food. However, the figures are similar

in size and magnitude to the average bids presented in Figure 4.

The marginal value of a share λi is estimated to vary across food banks by a

factor of 4, with λi for the food bank with the median consumption normalised to

1. Parameters are negatively correlated with a food bank’s Goal Factor, which is

sensible since a higher Goal Factor implies more shares. However this relationship is

very weak, stressing the importance of unobserved food wealth.

28I also correlate my estimates with observable characteristics of food banks, such as population
density in their catchment area, and agricultural rents. This analysis is omitted as I do not find any
particularly striking results. Correlations are in the expected directions but small. For example,
food banks in areas with higher population density or lower agricultural rents are estimated to have
lower average net donations.
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6.3 Third Stage Results

Figure 7: Estimated Storage Costs

Note: The figures plots posterior mean marginal flow pay-offs (i.e. negative of the marginal storage

costs) for a 20, 000 load for each storage type. Estimates are ordered according to the estimates for

Dried loads. Marginal payoffs are evaluated when stocks are at their long run mean.

Figure 7 plots posterior means of the marginal flow-payoffs from receiving 10 tons

of each type of food, evaluated when stocks are at their long run average. Estimates

are sorted according to the estimate for the Dried storage type.

I estimate significant differences across food banks, as well as across types of food.

Marginal flow pay-offs are generally negative, indicative of storage costs. This suggests

different food banks face different storage costs. Positive marginal pay-offs suggest

that food banks also benefit from not having an empty warehouse.

6.4 Model Fit

Figure 8 displays the true and predicted moments for various key measures. The

model matches the mean and standard deviation of bids conditional on entry, as well

as the average number of bids placed by each food bank on a given day. I slightly

under predict the probability of bidding on any given lot and the average distance

each load of food travels. Figure 9 recreates Figure 5 for simulated data, plotting

shaded 95% credible intervals against the estimates from the true data in red. I do

not plot standard errors for the true data. In Appendix G I present Gelman-Rubin
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convergence statistics. Generally, the data converged well.29

Figure 8: Model Fit

Measure Mean Std
True Mean q0.025 q0.975 True Mean q0.025 q0.975

Average Bid 1950 1860 1720 2040 4290 4350 4270 4470
given entry

Probability 0.0275 0.0239 0.0232 0.0252 0.164 0.153 0.151 0.157
of bidding

Number of Bids 0.676 0.683 0.664 0.721 1.66 1.33 1.3 1.36
per day

Distance to lot 805 748 735 765 634 587 576 606
given won

Note: This table presents several observed and model simulated moments of the data.

7 Counterfactuals

Feeding America introduced the Choice System, replacing the Old System, to give

food banks choice over the food they received. The importance of choice depends

on the extent of the heterogeneity in what food banks want from Feeding America.

Heterogeneity across types of food, across food banks, and across time. The estimates

in the previous section demonstrate evidence of such heterogeneity. Therefore, we

have reason to believe that choice is likely to be very important in this setting.

I now use counterfactual simulations to consider the welfare and distributional

consequences of Feeding America’s transition from the Old System to the Choice

System. I then simulate several additional allocation mechanisms to tease out the

most important features of the Choice System, features that are useful for other food

relief organisation around the world and in other market design settings.

7.1 The Old System

I described the Old System in detail in Section 2. I model the Old System in continu-

ous time, assuming that food banks could receive either an offer of food from Feeding

29100% of first stage parameters are below the standard threshold of 1.1, while 91% of second
stage parameters are below the 1.1 threshold and 94% are below the more lenient 1.2 threshold. The
model did not converge for 5 food banks, which I then removed due to their implausible parameter
estimates. These food banks only consume 1.5% of the food on the system.
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Figure 9: Model Fit

(A) (B)

Note: This figure recreates Figure 5 from simulated data, compared to the true data. The shaded

area gives 95% credible intervals of the simulated data, while the red line gives mean estimates from

the true data. Standard errors for the true data are not plotted. The red lines differ slightly from

Figure 5 as I do not include fixed effects or other controls.

America, or a shipment of food from their local donors / to their clients, at any point

in time. Continuity of time ensures that multiple of these events occurs simultane-

ously with probability almost surely zero. I assume food banks do not observe offers

made to, nor decisions of, other food banks. They do not know their place in the

queue; only their own Goal Factor and when they were last offered a load. They

form beliefs about the rate they receive calls from Feeding America, and then the

probability of being offered a load with various characteristics. I allow each load of

food to be offered to 10 food banks before it is returned to the donor.

I assume a Markov Perfect Equilibrium in symmetric strategies, as defined in

section 4. This requires that food banks make optimal acceptance decisions given

their beliefs, and that beliefs are consistent with the observed realisation of acceptance

rates. Appendix I.2 details how equilibrium beliefs and equilibrium value functions

are formed. Given beliefs I find each food banks’ value function by numerically solving

the Hamilton-Jacobi-Bellman differential equation. I then simulate the mechanism

and update beliefs using observed offer rates, repeating until convergence.30

30While I cannot rule out equilibrium multiplicity, I did not find evidence of multiplicity in
simulations. I varied the starting values, varying the initial ‘pickyness’ of food banks’ acceptance
decisions: Either as picky as under the Choice System, or as accepting as to take any food offered.
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7.1.1 Welfare Measurement

My counterfactuals produce welfare measures in terms of consumer surplus, measured

in shares. While this cardinal measure enables inter-food bank welfare comparisons,

shares have no value outside the Choice System. Instead, similar to Agarwal et al.

(2021), I report welfare as the equivalent change in the supply of food on the Choice

System that would have the same total value in shares. This measure is valid under

competitive equilibrium because the money supply adjusts to ensure prices are con-

stant, given changes to the supply of food. If the supply of food doubles, the money

supply adjusts so that expenditure doubles. Therefore, if consumer surplus under

the Old System is double that under the Choice System, I liken this to double the

nominal expenditure, which equates to double the supply of food.31

Importantly, the ‘level’ of welfare is not identified because the levels of both stocks

and flow payoffs are not identified. I normalise the level of welfare using welfare when

Feeding America allocates no food at all. Therefore, welfare results are reported on

a scale of zero (food is allocated no better than if no food was allocated) to 320 tons

(the daily average food supply under the Choice System).

I report utilitarian welfare and a weighted sum using Goal Factors as priority

weights. I also report the total distance travelled and amount of food allocated.

These are important measures for policy makers given the significant transport costs

as well as the political cost to Feeding America of wasting food.32

7.2 Results

Figure 10 presents the headline results, plotting simulated welfare under the Choice

System, the Old System, and No Allocation mechanism for each draw of the model

parameters from their posterior distribution. Welfare is on average 32.7% higher

under the Choice System than the Old System. The transition to the Choice System

lead to an increase in welfare equivalent to increasing the supply of donated food by

105 tons per day, which is enough to provide an additional 35,100 meals. These figures

31This is a lower bound on the value of the Choice System: If supply and expenditure changes by
a factor X, consumer surplus changes by a factor < X due to the concavity of payoffs (storage costs
are convex). Therefore doubling consumer surplus requires more than doubling the food supply.

32I cannot account for endogeneity in the food supply with respect to the allocation mechanism.
Since Prendergast (2017) reports the Choice System caused more food to be donated to Feeding
America, we should again consider these results a lower bound on the true benefit.
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Figure 10: Welfare

Note: This plot shows the posterior distribution of welfare under each mechanism, evaluated over

1000 draws from the posterior distribution of parameters. Welfare is weighted by Goal Factor and

measured relative to no allocation mechanism and the Choice System. On average, welfare increased

by the equivalent of increasing the supply of distributed food by 105 tons per day.

are statistically significant at the 0.1% level. When welfare is not weighted by Goal

Factor, this figure falls to 27% higher. My results are similar to Prendergast (2022),

who finds a welfare improvement of around 21%. Given that my fully structural

approach incorporates greater heterogeneity, it is unsurprising I find a larger effect.

Additional outcome measures are reported in Figure 13. Only 227 tons of food are

successfully allocated each day, compared to 300 tons under the Choice System, so

wastage is reduced by around a quarter. Furthermore, food banks sort into consuming

closer lots — the average ton of food travels 79 miles under the Old System, compared

to 60 miles under the Choice System. Total storage costs are only 7.4% higher under

the Choice System, despite 25% more food being stored, suggesting the food banks

are able to tailor their consumption towards the types of food they have space for.

Food banks are less picky under the Old System, with food banks around 3 times

more likely to accept any given load. They do not know when they can next access

the types of food they really want, so accept food even if it does not precisely meet

their needs. Food that might better meet the needs of a different food bank that just

happened to be lower in the queue.
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7.3 Distributional Consequences

Figure 11: Individual Welfare

Note: This plot shows food bank specific welfare under the Choice System minus welfare under the

Old System, ordered by the welfare difference, with 95% credible intervals across posterior draws.

On average 87.9% of food banks are better off under the Choice System than the Old System. 3

food banks have large credible intervals due to their Old System welfare exhibiting long right tails,

while another food bank exhibits a long left tail.

Feeding America put significant resources into minimising possible negative dis-

tributional consequences of the Choice System. Figure 11 presents welfare results by

food bank, plotting the difference between food bank specific welfare under the two

systems. On average 87.9% of food banks are better off under the Choice System.

The ≈ 12% of Food Banks who are often worse off under the Choice System

consume more and higher quality food under the Old System, and tend to be food

banks with lower than average Goal Factor. They appear to accept essentially any

food rejected by other food banks, benefiting from the bad market design. Otherwise,

we see very little correlation between a food bank’s welfare difference and their Goal

Factor (ρ = 0.059).33 Likewise, we do not see any strong correlations for factors such

as population density or deprivation indices. We do see that the food banks which

serve known food deserts are all significantly better off under the Choice System.

33We see some small positive correlations (ρ ∈ [0.08, 0.15]) between these welfare differences and
the estimated state transition parameters δ and Σ. Food banks with more uncertain net donations
benefit from being able to choose the food they receive from Feeding America. However these are
predominantly driven by one or two food banks with, for example, particularly high Σs who are
observed perform particularly well under the Choice System.
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7.4 Key Features

I now use additional simulations, varying the different features of these mechanisms,

to understand what is driving these welfare gains. This is important for identifying

key features we might take to other food allocation settings. I consider four sets of

additional mechanisms, some of which are also used in practice by other food relief

organisations.34 Additional computational details are given in Appendix I.

7.4.1 Sequential Offers

Under the Choice System any food bank can bid on any load of food, while under

the Old System each load of food could only be offered to around ten food banks. To

understand how important it is to allow every food bank access to every load of food I

consider the impact of removing the ten food bank constraint. This ‘Sequential Offer’

mechanism is strategically and outcome equivalent to the ‘Like’ mechanism proposed

by Walsh (2015) and used by Food Bank Local.

Figure 12 plots welfare under ‘Sequential Offers’ alongside welfare under the Old

System and the Choice System. Welfare under Sequential Offers is around 8% higher

than under the Old System, equivalent to an additional 17 tons per day. Welfare is

still lower than under the Choice System, suggesting that around 16% of the welfare

gain from transitioning from the Old System to the Choice System can be attributed

to being able to offer food to every food bank. Interestingly, three tons more food

is successfully allocated under Sequential Offers than even under the Choice System,

corroborating that food banks become less picky under this mechanism.

7.4.2 Sequential Auctions

By simulating sequential (rather than simultaneous) auctions, I consider the relative

importance of two key features of the Choice System: That food is allocated in

batches, and that food banks can signal the intensity of their preferences.

The value of allowing food banks to (credibly) signal their preferences is evident,

ensuring food is more likely to go to the food bank that values it most. Meanwhile,

34It is worth recognising that other food relief organisations often face different allocation prob-
lems to Feeding America. Nonetheless, these results remain a useful starting point. It would also be
interesting to consider directly tweaking features of the Choice System. However, even numerically
solving for the new MPE remains intractable. This is an important area for future research.
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Figure 12: Additional Mechanisms (1)

215 320232 270240

Old System Choice System

Sequential Offers

Sequential Auctions

Closest, All Offers

Welfare

Note: This figure shows estimated welfare, in equivalent tons per day, under the Choice System, Old

System, Sequential Offers (Old System with all offers), Closest — All Offers (sequential offers by

distance), and Sequential Auctions. Results for the Random and Single Offer Closest mechanisms

are excluded for graphability. 95% (marginal) Credible Intervals are plotted.

by allocating food in batches food banks have better information about all the food

being allocated that day and so we expect better matches (Akbarpour et al., 2020).

Like most other food relief organisations, under the Old System food was allocated

sequentially. Each load was distributed before the next arrived. This has a potential

benefit that food banks do not risk winning too many or too few loads, alleviating

the exposure problem of simultaneous auctions highlighted in Gentry et al. (2023).

Considering sequential auctions teases apart the relative importance of these two

features. Comparing Sequential Offers to Sequential Auctions pins down the value of

allocating food to the food bank that values it most in that moment, as opposed to

essentially offering the food out at random. Then, comparing Sequential Auctions to

the Choice System, pins down the importance of allocating food using simultaneous

versus sequential auctions.35

Results of this decomposition are displayed in Figure 12. Moving from Sequential

Offers to Sequential Auctions increases welfare by the equivalent of distributing an

extra 38 (4, 66) tons of food per day. As we go from sequential to simultaneous

auctions, welfare increases by the equivalent of an additional 50 (16, 83) tons per day,

so the batching effect dominates the exposure effect. Therefore, around 36% of the

welfare of moving from the Old System to the Choice System can be attributed to

the cardinal signal, while 48% can be attributed to the batching effect.

35It would be interesting to consider other simultaneous mechanisms, such as a VCG mechanism
or simultaneous allocation without the cardinal signals. However simulating equilibrium under such
mechanisms in a dynamic setting remains computationally intractable and is left for future work.
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Under Sequential Auctions food is always allocated to the food bank who values it

most in that moment, but it may not be the food that they most need at that time.

Then, they may forfeit more needed food later in the day because storage is now more

costly. These results are identified by the fact that even though only a small number

of bidders tend to bid on any given lot, 90% of lots still get allocated immediately.

Food banks are bidding on different lots, suggesting that horizontal heterogeneity is

more important than vertical heterogeneity. Therefore, it is more important that food

banks have information on all the different types and locations of lots than making

sure that food always goes to the food bank that values it most.

7.4.3 Closest Offers

Figure 13: Additional Mechanisms (2)

Mechanism Welfare Welfare Distance Allocated % Better Off
(unweighted) (weighted) (000 miles per day) (tons per day) (compared to CS)

Choice 320 320 18 300 1
System (320, 320) (320, 320) (17.9, 18) (299, 301) (1, 1)

Old System 230 215 18.3 227 0.121
(202, 261) (188, 251) (17.4, 19.3) (220, 234) (0.071, 0.176)

Sequential 249 232 23.6 303 0.162
Offers (219, 278) (208, 264) (22.9, 24.4) (301, 306) (0.106, 0.224)

Closest 81.8 63.6 0.45 61.8 0.066
Single Offer (54.7, 110) (42.6, 86.1) (0.416, 0.487) (55.6, 68.7) (0.035, 0.106)

Closest 254 240 9.74 307 0.22
All Offers (219, 284) (213, 268) (9.22, 10.3) (306, 309) (0.165, 0.271)

Random -355 -383 45.7 320 0.001
(-531, -150) (-543, -171) (45.2, 46.2) (320,320) (0, 0.012)

Sequential 286 270 20.4 295 0.249
Auctions (249, 324) (237, 304) (19, 22.1) (291, 300) (0.188, 0.318)

Note: This table displays posterior means and 95% credible intervals for various measures of welfare.

The final column gives the proportion of food banks who are estimated to be (weakly) better off

under each alternative mechanism compared to under the Choice System.

Transportation costs are an important determinant of food bank’s decision making.

To examine the relative importance of transport costs I now consider a mechanism

in which food is offered to only the nearest food bank, aiming to minimise transport

costs. I also consider a version where food is offered sequentially in order of distance.

These are an important set of mechanisms that are used in practice, implictly

40



or explicitly, by several food relief organisations. Many organisation, including the

Trussell Trust (U.K.) and Second Bite (Australia), do not allocate food centrally.

Instead, they link their partner food banks up with nearby donors, which is equivalent

to offering food only to the closest food bank.

Offering food only to the nearest food bank is equivalent to distributing only 63

tons of food each day under the Choice System, an 80% reduction. This is driven

by a comparable drop in the actual quantity of food successfully allocated: There is

almost always a slightly more distant food bank willing to pay to transport the lot

that extra distance. When food is offered to every food bank welfare increases to

roughly the same as under Sequential Offers (240 tons), despite a 60% reduction in

transportation costs. This is because it is always the same food banks being offered

the same types of food. Transportation costs are not so important a factor as to

design a mechanism entirely focused around their minimisation.

7.4.4 Random Allocation

Many food relief organisations pressure food banks to accept all the food they are of-

fered, attempting to minimise food waste. A central question concerns how important

it is to allow food banks to turn down food they do not have room for.

I consider an extreme mechanism: Randomly allocating food in proportion to a

food bank’s Goal Factor. Food banks are only able to reject the load if its stocks for

that type of food exceed the highest stocks ever ‘observed’ under the Choice System.

In Figure 13 I show that both weighted and unweighted welfare are significantly

lower than even allocating no food at all. In 99.5% of the simulations, every food

bank would be better off if Feeding America did not exist. Allowing food banks to

turn down food is extremely important.

8 Conclusion

The efficient and equitable allocation of food to food banks is of first-order importance

for the welfare of many of America’s most vulnerable. In this paper I examined the

welfare and distributional consequences of giving food banks choice over the types

of food they receive, studying Feeding America’s Choice System. I developed an

empirical model of food banks bidding for food on the Choice System. The central
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challenge was that I do not observe food banks’ stocks, as I do not observe the food

taken by clients nor the food received from local donors — the key determinants of

bidding behaviour. Nonetheless, I proved this model is identified from standard data,

and proposed a Gibbs Sampling procedure to estimate the model primitives.

I then used counterfactual simulations to compare equilibrium allocations under

the Choice System to their Old System, which gave food banks very limited choice.

The transition to the Choice System increased welfare by 32.7%, driven by the esti-

mated scale and scope of heterogeneity in the types of food needed by different food

banks at different points in time. On average 87.9% of food banks are better off

under the Choice System. Among other features, these results appear to be driven by

‘batching’, that food is allocated simultaneously in batches, whereas under the Old

System food was allocated sequentially. This is a particularly important finding as

most other food relief organisations around the world still allocated food sequentially.

How applicable my results are for other food relief organisations remains an open

question. Future work should apply this type of analysis to data from other food bank

networks. I also explored only a limited space of counterfactual mechanisms. Further

analysis of mechanism that can exploit these batching effects would be extremely

valuable, as well as further analysis of the importance of using fake money.
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Appendix

A Data

I now present additional details on how I construct the dataset used in my analysis.

Specifically, how I categorised the data and construct Goal Factors.36

Categories come from Prendergast (2022), combining several small similar cate-

gories (such as pasta and rice). Figure 14 panel (A) plots the categories as a proportion

of the total amount of food auction. The plot excludes multiple identical auctions,

which has the result of artificially reducing the proportions of Fresh Produce and

Beverages down from 24% and 17% respectively. Within categories I form subcat-

egories according to the most common product names.37 Figure 14 panel (B) plots

subcategories as a word cloud, with more common subcategories larger.

Food is categorised by how it is used, including Meals, Ingredients, Condiments,

Snacks, and Non-Food. Meals are items that could be eaten on its own as part of a

reasonably healthy diet for either breakfast, lunch, or dinner. Multiple Ingredients

can be mixed together to form a meal. Condiments can be added to a meal to enhance

it. Snacks can be eaten on their own, though not necessarily part of a meal. Snacks

includes beverages. Non-food items are inedible items, such as cleaning products.

This also includes formula and baby food.

Storage methods includes Dried, Tinned, Refrigerated, and Non-Food. The Non-

food category is identical to the non-Food Use category. Dried items can be stored

on a shelf, have extremely long shelf lives, and are generally light but bulky. Tinned

food, which includes jars and bottles, have long shelf-lives and are generally compact

and heavy. Refrigerated food must be stored in a fridge, but still expire reasonably

quickly. Any item that was additionally listed as ‘Shelf Stable’, such as UHT milk

was put in the tinned storage category.

To find the distance between every lot × food bank combination I convert zipcodes

into longitude/latitudes, then found the geodesic between these zipcodes using the

”distGeo” function from the R package ”geosphere”. In principle I could have found

36I do not directly observe joint bids or food sold by food banks. Because they are not core
features of the model, how I identify this data is detailed in the replication package.

37This is performed to ensure at least 30 lots per subcategory. Subcategories are more granular
the more observations there are. E.g. for cereal and beverages this includes brands, whereas all
cheese is lumped together.
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Figure 14: Composition of food allocated: Categories and Subcategories

the shortest road distance using arcGIS software, which would more accurately rep-

resent the transportation costs. However, this proved too computationally intensive

because of the large number of food bank × lot combinations (≈ 3.6 million).

I imputed Goal Factor figures using the (updated) formulae in Prendergast (2022).

For a small number of food banks their expenditure did not match up with their

Goal Factors. The largest deviation occurs for a food bank in a known food desert,

suggesting that food banks likely contact the ‘fairness committee’ to request a higher

Goal Factor. I account for this deviation by calibrating food banks’ Goal Factors and

their budget at the beginning of my data period, minimising the distance from my

calculated Goal Factor, while maintaining several known constraints (such as shares

cannot exceed 200,000). The resulting distribution of calibrated Goal Factors matches

the known distribution of Goal Factors (which I have, but cannot link). Details are

available in the replication package.

B Additional Descriptive Analysis

In this appendix I present additional evidence of systematic variation in bidding

behaviour over time. I use a fixed effects Tobit specification, given in equation B

below. I investigate how each food bank i’s bid on food of storage type g varies

across months m, writing αigm for these average bids. I estimate the model only on

food banks who win at least 100 lots over the period. I also control for the distance
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between the food bank and the lot. I drop the first and last months due to incomplete

data. Each i × g × m cell averages 80 observations. I also use a restricted model

with average bids αig fixed over time, the same model used to create Figure 4. The

hypothesis test of interest is whether αigm = αig for all m.

bitl = αigm+βidistanceitl+εitl b∗itl =

bitl if bitl ≥ Rh

Rh if Otheriwse
εitl ∼ N(0, σih)

This hypothesis test may be underpowered, since food banks’ needs also vary

within a month and this may be of the same scale as the across month variation.

The test will be overpowered if variation in factors other than food banks’ needs is

mistaken for variation in needs. For example, if the quality of food varies unobservably

over time, this may cause systematic variation in bidding behaviour that should not

be attributed to variation in needs. To account for this I estimate a second restricted

specification with food bank specific month fixed effects.38

Figure 15 plots the likelihood ratio test statistic across food banks. The dotted

lines gives the χ2 critical values for tests at the 5% significance level. The red points

give the baseline specification, while the blue points give the month fixed effects

specification. I reject the null hypothesis at 5% significance level, for 96% of food

banks in my baseline specification, and 70% of food banks for the month fixed effects

specification. Therefore I have strong evidence that food banks’ bidding behaviour,

and hence their needs, vary significantly over time.

C Non-parametric Identification

I now prove Proposition 1, that the model is non-parametrically point identified.

I begin by discussing in slightly more detail the necessary assumptions underlying

the argument, before introducing some additional terminology required for the proof.

Then, in C.1 I present the two step proof. Altmann (2022) showed that conditional on

having identified i) the conditional equilibrium distribution of bids f(bt|s0t, st) and

38These fixed effects capture variation in bidding that is common across food types. Under this
specification a rejection of the null is evidence of systematic variation over time in bidding behaviour
on specific types of food. This specification is almost certainly underpowered. If food banks need
more food of all types in certain months the fixed effects also soak up this variation.
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Figure 15: Heterogeneity Across Time

Note: This figure plots likelihood ratio test statistics for the hypothesis test that average bids for each type of food

are constant over time, against the alternate hypothesis that bids vary by month. The estimated model controls for

censoring, distance, and lot composition. The blue results also include month fixed effects. Under this null hypothesis

the test statistic takes a χ2 distribution with 200 (red) or 160 (blue) degrees of freedom. Critical values for tests at

the 5% significance levels are plotted as horizontal lines.

ii) the transition process f(st+1|wt, st), that variation in the state (s0t, st) is sufficient

for non-parametric identification of both π, and F υ. Therefore, it suffices to prove

that both f(bt|s0t, st) and f(st+1|wt, st) are identified.

The argument builds on the key result in Hu and Shum (2012), closely follow-

ing their spectral decomposition techniques for linear operators. The key distinction

between our arguments consists of the introduction of an additional intermediate

variable (winnings) that acts as an observed shifter of the unobserved process. This

requires that conditional on st and s0t, that both bids and winnings are independent

of past winnings. This reduces the assumptions required for identification.39 It also

yields clear intuition behind identification of the latent state: Variation in this ob-

served shifter of the unobserved state pins down the relationship between bids and the

unobserved state. Then variation in bids over time, holding constant the observed

shifter, enables identification of the state transition process. The final distinction

39Hu and Shum (2012)’s version of assumption 5 requires that conditional on observations at t
and t− 1, variation at t− 2 is sufficient to pin down functions of observables at t + 1. Meanwhile,
assumption 2 i) means we do not have to normalise the latent state up to monotone transformation.
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is that this framework encapsulates multivariate latent states, as the signals of the

latent state (bids and winnings) are both also multivariate. Lastly, note that this

identification argument works in the case of multiple strategic agents, not only the

single agent or ‘large market’ setting as considered in this paper. bit+1 is allowed to

depend on sjt+1, so that we essentially see how i’s behaviour varies after j wins a lot,

as their stocks have now increased in an observable way.

Like all assumptions about completeness, Assumption 5 is strong and requires an

unrealistic amount of variation in wt−1 and bt+1. Nonetheless it is still important for

understanding the conditions for non-parametric identification, demonstrating that

identification is not driven by (potentially stronger) parametric assumptions.40

C.0.1 Linear Operators and Spectral Decomposition

A ‘linear operator’ Lx,y is a map from the L|y| space of functions of y to the L|x| space

of functions of x, such that for function g : R|x| → R|y| : (Lx,yg)x =
∫
f(x, y)g(y)dy.

Likewise, define the diagonal operator Dx,y as follows: (Dx,yg)x = f(x, y)g(y).

Linear operators are close to infinite dimensional counterparts to matrices, with

similar properties. Injectivity and surjectivity of these mappings is inherently tied to

completeness. E[g(y)|x] = 0 for all x implies g(y) = 0 for all y if and only if the

mapping Lx,y is injective and f(x) > 0, so the left inverse of Lx,y exists. That is, vari-

ation in x yields enough conditional variation in y to allow us to pin down functions

of y. So assumption 2 iii) and 5 i) equivalently assume the existence of left inverses

of the operators Lst+1|wt,st , Lbt|s0t,st , while 5 part ii) ensures the right invertibility of

Lbt+1,s0t+1,wt,s0t,wt−1 . See Hu and Schennach (2008) for additional discussion.

The proof below relies on taking a spectral decomposition of certain linear opera-

tors, essentially the linear operator equivalent of eigenvalue decomposition. Just as in

Hu and Shum (2012), I require the eigenvalues of this decomposition are unique. This

40The assumption nests two additional implicit assumptions: That reservation prices do not
bind, and that zgt has full rank. Binding reservation prices mean first order conditions do not hold
with equality. However, as discussed in Altmann (2022), reservation prices are not a first-order
issue, not substantially altering the identification problem. In the way that a censored regression
model, which requires a Tobit or MAD specification, does not substantially alter the regression
identification problem. The key intuition garnered from this simplified approach extends to the
case with reservation prices. Meanwhile the rank condition on zgt , the size and composition of lots
auctioned each day, simply ensures that at least one of each food type is auctioned each period, so
that bids in every period are informative of every dimension of stocks. As it turns out, identification
actually only requires this rank condition for 3 consecutive periods, which holds.
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requires that for any, for any pair (w̄t, s̄0t) satisfying assumption 5 part ii) and any

st, that the density f(w̄t|s̄0t, st) =
∫
f(w̄t|s̄0t,bt)f(bt|s̄0t, st)dbt is strictly positive

and bounded above. This is already guaranteed by the model setup. I also require

that for any tuple (wt, s0t, w̄t, s̄0t) and for any s̄t 6= st satisfying this assumption, that

Λ(wt, s0t, w̄t, s̄0t, st) 6= Λ(wt, s0t, w̄t, s̄0t, s̄t), where:

Λ(wt, s0t, w̄t, s̄0t, st) =
f(wt|s0t, st)f(w̄t|s̄0t, st)

f(w̄t|s0t, st)f(wt|s̄0t, st)
.

That is, variation in the unobserved stocks yields variation in the relative conditional

win probabilities (integrating over bids) for these pairs of winnings and available

lots. In practice, this result follows from Assumption 4 part iii), which ensures that

(conditional on υ), bids are monotonic in stocks. However proof of this proposition

is tedious, so this should instead be considered an auxiliary assumption.

C.1 Proof of Proposition 1

The proof follows the argument of Hu and Shum (2012). First I show that the

conditional density f(bt+1|s0t+1,wt, st) is completely determined by the observed joint

density f(bt+1, s0t+1,wt, s0t,wt−1). Then I show that f(bt|s0t, st) and f(st|wt−1, st−1)

are point identified given f(bt+1|s0t+1,wt, st) and other observed joint densities.

C.1.1 Identification of f(bt+1|s0t+1,wt, st) by spectral decomposition

Lemma C.1. f(bt+1, s0t+1,wt, s0t,wt−1) completely determines f(bt+1|s0t+1,wt, st).

The argument broadly follows the proof of Lemma 3 from Hu and Shum (2012),

using bt+1 in place of their Vt+1, wt−1 in place of Vt−2, wt for wt, and s0t for wt−1.

Consequently I do not elaborate the proof in excessive detail.

Proof: 1. From our exclusion restrictions we can write:f(bt+1, s0t+1,wt, s0t,wt−1) =∫
st
f(bt+1|s0t+1,wt, st)f(s0t+1,wt|st, s0t)f(st, s0t,wt−1)dst

2. In Operator notation, for fixed (s0t+1,wt, s0t), this can be written as:

Lbt+1,s0t+1,wt,s0t,wt−1 = Lbt+1|s0t+1,wt,stDs0t+1,wt|s0t,stLst,s0t,wt−1 (5)

3. Assumptions 5 part i) and 2 part iii) ensure that for any s0t+1,wt, bt+1

is also complete for st, so that the left inverse of Lbt+1|s0t+1,wt,st exists.
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Likewise, f(s0t+1,wt|s0t, st) > 0, which follows from the discussion in

C.0.1 above, ensures Ds0t+1,wt|s0t,st is invertible. Therefore, we can write:

Lst,s0t,wt−1 = D−1
s0t+1,wt|s0t,stL

−1
bt+1|s0t+1,wt,st

Lbt+1,s0t+1,wt,s0t,wt−1 (6)

4. As proven in Hu and Schennach (2008), assumption 5 ii) ensures that

for any s0t+1 there exists a neighbourhood near this fixed wt, s0t, (W̄, S̄0),

such that for all (s̄0t, w̄t) ∈ (W̄, S̄0), Lbt+1,s0t+1,w̄t,s̄0t,wt−1 is right invertible.

Therefore, using equations 6 and 5 we can write:

Lbt+1,s0t+1,wt,s0t,wt−1L
−1
bt+1,s0t+1,w̄t,s0t,wt−1

× Lbt+1,s0t+1,w̄t,s̄0t,wt−1L
−1
bt+1,s0t+1,wt,s̄0t,wt−1

= Lbt+1|s0t+1,wt,stDs0t+1,wt|s0t,stD
−1
s0t+1,w̄t|s0t,st

×Ds0t+1,w̄t|s̄0t,stD
−1
s0t+1,wt|s̄0t,stL

−1
bt+1|s0t+1,wt,st

= Lbt+1|s0t+1,wt,stDs0t+1,wt,s0t,w̄t,s̄0t,stL
−1
bt+1|s0t+1,wt,st

. (7)

Where the diagonal operator:41

(Ds0t+1,wt,s0t,w̄t,s̄0t,sth)(st) = Λ(wt, s0t, w̄t, s̄0t, st)h(st).

5. Equation 7 states the left hand side has an eigenvalue-eigenfunction de-

composition given by the right hand side. The discussion in C.0.1 above

ensures the eigenvalues are bounded, so these operators on are similarly

bounded. Therefore we can apply Theorem XV.4.3.5 from Dunford and

Schwartz (1971), ensuring uniqueness of the decomposition.42 Our as-

sumptions on Λ varying with st ensures that eigenvalues for different

values of st are distinct (for some (wt, s0t) 6= (w̄t, s̄0t) ∈ (W̄, S̄0)).

6. Eigenvalues and eigenfunctions are unique up to invertible transforma-

tions of st. Let g : R|s| → R|s| denote any invertible function of stocks,

so that s = g(s̃). Consider the set of g that satisfy assumption 2 part i).

41By assumption 1 the f(s0t+1|s0t,wt, st) = f(s0t+1|s0t) terms cancel out. We can easily allow
f(s0t+1|s0t,wt, st) = f(s0t+1|s0t,wt) if this (observed) density is > 0 everywhere.

42Linear operators are bounded by their largest eignevalue. This theorem then ensures uniqueness
of the eigenfunctions up to a scalar multiple. The requirement that the eigenfunctions are proper
densities that integrate to one pins down their scale.
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This requires that for any vector x:

f(bt+1|s0t+1,wt + st) =f(bt+1|s0t+1, (wt − x) + (st + x))

=f(bt+1|s0t+1, (wt − x) + g(s̃t + x))

This is the crux of the perfect substitutes assumption. Because g is

invertible, the only function that satisfies perfect substitutes is g(s) =

s + µ, so that stocks are identified up to location. Then, imposing that

stocks have long run mean of zero ensures we can write 0 = E[s] =

E[g(s)] = E[s + µ] = E[s] + µ which holds only for µ = 0.

7. Therefore, the density f(bt+1|s0t+1,wt, st) is point identified for wt sat-

isfying assumption 5 ii). Assumption 2 i) implies the density can be

written as f(bt+1|s0t+1,wt + st), ensuring it is identified for all wt.

C.1.2 Identification of f(bt|s0t, st) and f(st|wt−1, st−1) given f(bt+1|s0t+1,wt, st)

Lemma C.2. If fbt+1|s0t+1,wt,st identified, then so is f(bt|s0t, st) and fst|wt−1,st−1.

Proof: 1. f(bt, s0t,wt−1) =
∫

st
f(bt|s0t, st)f(st, s0t,wt−1)dst. In operator notation,

Lbt,s0t,wt−1 = Lbt|s0t,stLst,s0t,wt−1 .

2. Substituting in Lst,s0t,wt−1 from equation 6:

Lbt,s0t,wt−1 = Lbt|s0t,stD
−1
s0t+1,wt|s0t,stL

−1
bt+1|s0t+1,wt,st

Lbt+1,s0t+1,wt,s0t,wt−1 .

3. Taking sequential right inverses yields:

Lbt|s0t,st = Lbt,s0t,wt−1L
−1
bt+1,s0t+1,wt,s0t,wt−1

Lbt+1|s0t+1,wt,stDs0t+1,wt|s0t,st .

Therefore f(bt|s0t, st) is identified.

4. f(bt+1|s0t+1,wt, st) =
∫

st+1
f(bt+1|s0t+1, st+1)f(st+1|wt, st)dst+1. In oper-

ator notation, Lbt+1|s0t+1,wt,st = Lbt+1|s0t+1,st+1Lst+1|wt,st .

5. From assumption 5 i) the left inverse of Lbt|s0t,st exists, and so Lst+1|wt,st =

L−1
bt+1|s0t+1,st+1

Lbt+1|s0t+1,wt,st , therefore f(st+1|wt, st) is identified also.
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D Inverse Bid System

In this Appendix I demonstrate that, in addition to the transition equation given

in Assumption 2, a food bank’s optimisation problem yields the Observation and

Censoring equations given in text. For the most part, I simply the results presented

in Altmann (2022) for the quadratic parametrisation of κ.

Parameterising κ, and given entry decision d∗i , the maximisation problem is given

by: max
b

{∑
l Γl(bl, d

∗
l ; s)(υl − bl) +

∑
a Pa(b,d

∗; s)[Φsahi − sagTi Ψsagi ] s.t. bl ≥ Rl

}
.

The maximand can be simplified, allowing us to write the lagrangian as:

L(b|d∗,υ, s) =
∑
l

Γl(bl, d
∗
l ; s)(υl− bl + Φzhl −zgTl Ψ[zgl + 2sgi +

∑
m 6=l

Γm(bm, d
∗
m; s)zgm])

+ Φshi − sgTi ΨsgTi −
∑
l

Λl(Rl − bl).

Λl are lagrangian multipliers.43 Taking First Order Conditions and rearranging yields:

b∗l +
Γl(b

∗
l , d
∗
l ; s)

∇bΓl(b∗l , d
∗
l ; s)
− Λ∗l = Φzhl − zgTl Ψ(zgl + 2sgi + 2

∑
m 6=l

Γm(b∗m, d
∗
m; s)zgl ) + υl = yl.

Λ∗l , and hence yl, is unobserved. Let y∗l = b∗l +
Γl(b

∗
l ,d
∗
l ;s)

∇bΓl(b
∗
l ,d
∗
l ;s)

be what we observe.

When b∗l > Rl, we infer Λ∗l = 0, so that y∗l = b∗l +
Γl(b

∗
l ,d
∗
l ;s)

∇bΓl(b
∗
l ,d
∗
l ;s)

= yl.

Because of the non-zero probability of tieing at the reserve price Γl is non-differentiable

at Rl. However, because they prefer to bid the reserve price (and risk tieing), rather

than bidding 1 share above reserve, assuming exogenous tie breaking Altmann (2022)

demonstrates that, for l such that b∗l = Rl, we have:

yl ≤ Rl +
Γl(Rl + 1, d∗l ; s)

Γl(Rl + 1, d∗l ; s)− Γl(Rl, d∗l ; s)
(= y∗l ).

They also demonstrate that because the bidder is observed entering, they must prefer

to enter and bid the reserve, than not enter at all. This yields the inequality:

(yl =) Φzhl − zgTl Ψi(z
g
l + 2sgi + 2

∑
m

Γm(b∗m, d
∗
m; s)zgm) + υl ≥ Rl.

43Derivation of the simplification just exploits the quadraticness of κ, and involves tedious algebra.
It employs

∑
a Pa(b,d; s)sgTi Ψsgi = sgTi Ψsgi and

∑
a Pa(b,d; s)sai = si +

∑
l Γl(bl, dl; s)zl. Note that

Assumption 4 ensures ∇blΓl > 0 for bl > Rl.
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This implies that, for l such that b∗l = Rl, Rl ≤ yl ≤ y∗l. Finally, for l such that

d∗l = 0, we can reverse this inequality (they prefer not to enter than to enter at the

reserve), and hence yl ≤ Rl.

E Proof of Proposition 2.

In this Appendix I prove Proposition 2. However, I prove a modified version of the

proposition that accounts for binding reserve prices, excluded from the text for ease

of exposition. The modified proposition is given as:

Proposition 2′. The ex-ante Value Function can be expressed as:

E[W (υit, si, s0)|si, s0] =
E[qt(s

g
i )E[W (υit, si, s0)|bit,dit, si, s0]|s0]

E[qt(s
g
i )|s0]

(8)

Where qt(s
g
i ) gives the posterior probability that sgit = sgi and

E[W (υit, si, s0)|bit,dit, si, s0] = −sgTi Ψis
g
i

+
∑
l


I[bl > Rl]

(
λ Γl(bl,dl)

2

∇bΓl(bl,dl)
+
∑

m 6=l Γl(bl, dl)z
gT
l Ψiz

g
mΓm(bm, dm)

)
I[bl = Rl]Γl(Rl, 1)

 E[υl|bl = Rl,b−l]− λRl + Φzhl

−zgTl Ψ[zgl + 2sg +
∑

m 6=l Γm(bm, dm)zgm]

 (9)

The proof consists of two parts. First, I prove equality 8, extending results from

Arcidiacono and Miller (2011) to the continuous choice case. Then I prove equality

9, applying a result from Altmann (2022) for quadratic payoffs. The conditional

expectation E[υl|bl = Rl,b−l] is just a truncated expectation, and given the gaussian

assumptions has a simple analytic expression using the bounds derived in D.

E.1 Proof of equality 8

To simplify notation, I drop i subscripts and dependence on the observe state s0.

This can be trivially introduced by multiplying objects by I[s0
t = s0]. I also drop

dependence on the discrete actions d, also trivially introduced by multiplying objects

by I[dt = d] and summing over possible actions, as in the discrete choice case.44

44The proof uses the Dirac Delta function, defined for continuous random variable B with density
fB such that EB[δ(B−b)] = fB(b) and with the property that

∫
B
δ(B−b)dB = 1. I also use that

δ((B,S)− (b, s)) = δ(B− b)δ(S− s).
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Proof: 1. First, I prove that fbt(b|s) =
EOT

[δ(bt−b)|qt(s)]

EOT
[qt(s)]

:

fbt(b|s) =
fbt,st(b, s)

fst(s)
Bayes’ rule

= =
Ebt,st [δ(bt − b)δ(st − s)]

Est [δ(st − s)]
Definition of Dirac δ Function

=
EOT

[Ebt,st [δ(bt − b)δ(st − s)|OT ]]

EOT
[Est [δ(st − s)|OT ]]

Iterated Expectations

=
EOT

[δ(bt − b)Est [δ(st − s)|OT ]]

EOT
[Est [δ(st − s)|OT ]]

as bt is part of OT

=
EOT

[δ(bt − b)qt(s)]

EOT
[qt(s)]

Definition of q

2. Apply iterated expectations for Eυt [W (υt, s)|s] = Ebt [Eυt [W (υt, s)|bt, s]|s].

For notational convenience, let W̃ (bt, s) = Eυt [W (υt, s)|bt, s].

3. Applying the result from step 1.:

Ebt [W̃ (bt, s)|s] =

∫
b

W̃ (b, s)fbt(b|s)db =

∫
b

W̃ (b, s)
EOT

[δ(bt − b)qt(s)]

EOT
[qt(s)]

db

4. The denominator is not a function of the random variable b, so pull it

from the integral. Then, move W̃ (b, s) into the expectation for:

=

∫
b
W̃ (b, s)EOT

[δ(bt − b)qt(s)]db

EOT
[qt(s)]

=

∫
b
EOT

[W̃ (b, s)δ(bt − b)qt(s)]db

EOT
[qt(s)]

5. From the definition of the delta function the expectation equals zero for

b 6= bt, so that I can replace W̃ (b, s) with W̃ (bt, s). Then, swap the

order of integration, moving the integral into the expectation for:

=

∫
b
EOT

[W̃ (bt, s)δ(bt − b)qt(s)]db

EOT
[qt(s)]

=
EOT

[
∫

b
W̃ (bt, s)δ(bt − b)qt(s)db]

EOT
[qt(s)]

6. Within the expectation, bt and s are constant, so pull W̃ (bt, s)qt(s) out

of the integral, before applying the definition of the delta function:

=
EOT

[
∫

b
δ(bt − b)db W̃ (bt, s)qt(s)]

EOT
[qt(s)]

=
EOT

[W̃ (bt, s)qt(s)]

EOT
[qt(s)]
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E.2 Proof of equality 9

I now prove that the conditional expectation Eυi
[W (υi, si, s0)|bit,dit, si, s0] has the

convenient form above. If reserve prices do not bind then, as in Altmann (2022), b

directly pins down υ. As shown in appendix D, with binding reserve prices υ is only

determined up to a convex set. Therefore, we must take an expectation over this set.

I use b∗ and d∗ to denote optimised bids / entry, i.e. b∗i = b(υi, s;κ) is a function of

υ. Trivially, Eυi
[h(b∗)|bit] = h(bit) for any function h.

Proof: 1. I[b∗l > Rl]+ I[b∗l = Rl]+ I[d∗l = 0] = 1, so we can write the (parametrised)

value function as: W (υ, s)− Φsh + sgTΨsgT =

∑
l


I[b∗l > Rl]Γl(b

∗
l , d
∗
l )(υl − λbl + Φzhl − zgTl Ψ[zgl + 2sg +

∑
m 6=l Γm(b∗m)zgm])

+I[b∗l = Rl]Γl(b
∗
l , d
∗
l )(υl − λbl + Φzhl − zgTl Ψ[zgl + 2sg +

∑
m 6=l Γm(b∗m)zgm])

+I[d∗l = 0]Γl(b
∗
l , d
∗
l )(υl − λbl + Φzhl − zgTl Ψ[zgl + 2sg +

∑
m 6=l Γm(b∗m)zgm])

(10)

2. By definition I[d∗l = 0]Γl(b
∗
l , d
∗
l ) = 0, so the final row equals zero.

3. Next, I[b∗l = Rl]Γl(b
∗
l , d
∗
l ) = Γl(Rl, 1), so second row of equation 10 equals:

I[b∗l = Rl]Γl(Rl, 1)(υl − λRl + Φzhl − zgTl Ψ[zgl + 2sg +
∑

m6=l Γm(b∗m)zgm])

4. Reserve prices do not bind for the first row, so the FOCs hold with equal-

ity, meaning we can substitute in the inverse bid system ξl(b,d) derived in

Appendix D in place of υl, giving: λ
Γl(b

∗
l )2

∇lΓl(b
∗
l )

+Γl(b
∗
l )
∑

m6=l Γm(b∗m)zgTl Ψzgm)

5. Finally, take the expectation ofW (υ, s) over υ, conditional on bit,dit, si, s0.

The first row only depends on υ through b∗,d∗, so we essentially just get

a change of variables. The second row is affine in υl, and otherwise only

depends on υ through b∗,d∗. Therefore, we take a simple conditional

expectation of υl given bilt = Rl,bi−lt. This yields equality 9.
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F Additional Estimation Details

In this Appendix I detail the estimation procedure outlined in Section 5, including

specification of priors and the sampling algorithm.

F.1 Step 1.

First, I estimate food banks beliefs about the probability of winning lot l given bid bitl.

While I assume there is zero probability of ties above the reservation price, I allow for

ties at the reservation price. This occurs occurs in 0.02% of auctions. However, 15%

of winning bids are at the reserve price, so food banks must consider the non-zero

probability of tieing if they bid exactly the reserve. Food banks recognise this and

regularly bid just above −2000, which causes high density of winning bids 1 to 50

shares above the reserve, so must also be accounted for in the model.

The bidder wins lot l given bid bilt if bilt > b̄lt (the highest rival bid). If bilt = b̄lt

they win with probability 0.5. Like i’s bids, b̄lt is censored both at Rl (when the

maximum rival bid equals the reservation price) and below it (when no rivals place

bids). I introduce the latent random variable b̄∗lt, with cdf Gl(b
∗|s0t), such that:

b̄lt =



∅ if b̄∗lt ≤ Rl ← No rivals enter

Rl if b̄∗lt ∈ [R̄l, Rl) ← Rival bids Rl

Rl + εlt if b̄∗lt ∈ [Rl, R̄l) ← Rival bids just above Rl

b̄∗lt if b̄∗lt > Rlt ← Rival bids > Rl

(R̄l, Rl) are category specific cutoffs to be estimated, similar to the cutoffs estimated

in ordered logit models. This latent variable structure states that when b̄∗lt ≤ Rl (or

b̄∗lt ∈ [R̄l, Rl)), i would win (or tie) if they bid reserve. Meanwhile, if b̄∗lt ∈ [Rl, R̄l)

then the observed winning bid is actually just above the reservation price, where

εlt ∼ exponential(α) and α is a parameter to be estimated. So, a competing food

bank must take into account the excess mass just above the reservation price.45

45This modelling approach is unusual, but enables the model to rationalise the excess mass of
winning bids at, and just above, reserve. I assume food banks do not internalise the probability of
tieing at just one share above the reservation price (and likewise two, three, etc). The cutoffs are
identified by the excess mass of winning bids at/just above the reservation price.
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Given the distribution of b̄∗lt, and implied distribution of b̄lt, i’s beliefs are:

P (i wins l|bilt; s0t) = Γl(bilt|s0t) =


Gl(bilt|s0t)− f(bilt|s0t) if bilt > Rlt

1
2
Gl(R

c|s0t) + 1
2
Gl(R̄

c|s0t) if bilt = Rlt

0 otherwise

(11)

Where f(bilt|s0t) = [Gl(Rl|s0t)−Gl(R̄
c|s0t)]e

−αbilt captures the probability that i loses

out to a food bank bidding just above the reservation price. This probability features

a discontinuity at the reserve price.

F.1.1 Parameterisation and Computation

I normalise winning bids by the reservation price, estimating the distribution of

b̄∗lt −Rl. Lots contain up to four distinct categories, subcategories and storage types,

reflected in the shape, scale and location parameters. The shape parameters ξ are

category specific for categories with at least 500 loads. The scale parameters ζ are

all category specific. I include additional scale fixed effects if the lot has been unsuc-

cessfully auctioned previously, and for lots with subcategories listed as “mixed”. The

location shifter ν includes the common state variables, subcategory fixed effects, and

dummies for several observables such as whether the lot is sold by a food bank. The

threshold cutoffs R̄l and Rl vary across categories for which at least 100 lots were

won at the reservation price. The remaining categories are grouped together. The

exponential parameter α is constrained positive.

I drop the first 60 days to construct the previous 30 days’ supply. I maximise the

posterior likelihood, then sampled from the posterior distribution using Metropolis

Hastings. I use the MLE inverse hessian for the proposal variance which I adaptive

tune as per Atchadé and Rosenthal (2005).

F.2 Step 2.

Within the food banks I use for estimation I further split food banks into Type

1, the 28 food banks who win more than 200 loads over my sample (65% of total

consumption), and 62 Type 2 who win more than 50 loads (29%). Parameters that

are common across food banks, including hierarchical parameters, are estimated on

data from Type 1 food banks only, for whom I have sufficient identifying variation.
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F.2.1 Parametrisation

The pseudo-payoff function is parameterised as κ(si) = Φis
h
i −sgTi Ψisi. I do not allow

all elements of Φi to vary for each food bank, as this introduces too many parameters

to estimate. Instead I exploit that 152 subcategories are nested within the 5 different

‘usage’ types u, so that Φis
h
i =

∑
h

∑
u Φ̃iuΦ̄hkhus

h
ih where khu = 1 if subcategory h

has usage u, and zero otherwise. So, I estimate 152 subcategory parameters Φ̄h and

also 5 parameters Φ̃iu for the usage types for each i, the mean of which (over i) is not

identified so normalised to 1.

The standard deviation of the lot specific idiosyncratic value σl vary depending on

the combination of goods auctioned together in the lot. To simplify posterior sampling

I find the 60 most common category combinations (e.g. 2
3

dairy 1
3

cereal), and associate

each combination with a unique parameter, as well as an ‘other’ parameter for the

remaining 5.5% of combinations.

F.2.2 Priors and Hierarchical Distributions

Write ψi as the stacked vector of unique elements of the matrix Ψi and food bank spe-

cific components of Φi (Φ̃i), which are drawn from hierarchical distribution N(ψ,Σψ).

The hierarchical framework reduces the posterior variance of estimated parameters

at a cost of bias, as estimated parameters are drawn together. Observations with a

lot of identifying variation place little weight on the hierarchical parameters, whereas

observations with little identifying variation place more weight on hierarchical param-

eters. Any bias caused by this framework causes parameters to be drawn together, so

that my estimates will be biased in favour of the Old System rather than the Choice

System. For the parameters of ψ corresponding to the mean of Φ̃iu I use strong priors

of 1, as the mean of these parameters is not separately identified from Φ̄. I constrain

Σψ to be a diagonal matrix to simplify sampling (discussed shortly). Otherwise, I

assume weak normal-inverse-gamma priors for these objects.

For both the distance coefficients and subcategory weights Φ̄ I use weak normal

priors. For σl I use weak inverse gamma priors, while for λi I use gamma priors,

placing around 100 times more weight on the data than on the prior of mean of 1.

For the parameters of the transition process (δig, µig,Σig), because the requirements

for identification are strong, I use informative normal-inverse-gamma priors. The

means of µig and Σig are taken as the mean and variance of −wigt and the prior mean
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of δig is set to 0.46 I set the prior shape parameters, which influence prior variances,

to ensure around 100 times more weight is put on the data than on the priors.

F.2.3 Computation

I focus on data from only the highest 25 bids placed each day by each food bank.47

I begin the Carter-Kohn algorithm from the 61st day in my sample. To reduce

dependence on the intial state, which I set to the long-run mean, I set the initial state

variance to 10 times the long-run variance and also discard the first 40 days sampled.

All truncated normal draws are performed using Botev (2017)’s procedure.

I constrain elements of Ψ and Φ to be positive using truncated priors, for identifi-

cation requirements and also because the sampler often diverged otherwise. The Φ̄h

constraint binds for just 5 apparently unpopular subcategories with limited shelf lives,

including fresh bread and milk. I constrain δ and Σ to be diagonal, as separately

identifying off-diagonals from the off-diagonal components of Ψ proved difficult. I also

impose diagonal elements of δ to be within [−1, 0], to ensure the process remained

stationary.

As all my priors are conjugate I sample directly from the conditional posterior

distributions. The only exception is for the parameters of the hierarchical distribution

ψ,Σψ, due to the constraints on Ψ, for which I using adaptively tuned Metropolis

Hastings. I sample beliefs only every fifth iteration, and run the full procedure for

one million iterations, burning out the first half. Initial points are drawn from the

prior distributions. I run two independent chains, then uniformly sample 500 points

from each chain, keeping 1,000 parameter draws in total, which I use in later steps.

46This is because we expect that on average winnings more or less off-set shortfalls in net do-
nations. δig = 0 ensures my results are biased in favour of the Old System. If net donations are
endogenous (δ < 0) this allows food banks to use their winnings to influence future net donations.
Choice is then even more valuable. When local donations are negatively correlated with previous
winnings food banks can focus on only winning food from the Choice System they know they cannot
get from local donors.

47This assumption considerably speeds up both computation and convergence, and is not expected
to significantly impact results. Even Type 1 food banks place more than 15 bids only 1% of the
time. However on 25% of auction days more than 25 unique (non-homogenous) lots are auctioned
simultaneously. By ignoring that food banks also choose not to bid on any more than the first 25
lots I bias my results towards food banks being willing to bid on too high a proportion of lots.
However, the degree of this bias should be small. I already take into account that food banks only
bid on maybe 5 lots, then choose not to bid on the other 20, so that there is relatively little extra
information conveyed by them also choosing not to bid on lots 26+.
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F.3 Step 3.

In the third step I evaluate the continuation value as a function of observed bids and

the pseudo-static pay-off, before backing out the combination flow pay-off.48

Because states are continuous I must evaluate the continuation value over a finite

set of states. For each food bank I form a 304 dimensional grid of state, with 30

points per dimension from the 2.5 and 97.5 percentiles of their sampled states. For

each t I form the (approximate) posterior distribution of stocks qt(s
g
i ) using my 1, 000

draws of sgit. I use an independent normal kernel and Silverman’s rule of thumb. I

evaluate the maximised pay-off at each time period W̃ (bt,dt|s) using the formulae in

Appendix E (with finite sample approximations) for each parameter draw.49

I fit a polynomial function of the states to the ex-ante value function, includ-

ing interaction terms. I use a standard least squares procedure, weighting by the

sum of posterior probabilities. The main version uses a quadratic. This is primarily

because my counterfactuals occasionally require extrapolation. Higher order polyno-

mials typically lead to extrapolated values much further from the interpolated values.

I validate this approximation by considering the R2s from these regressions, detailed

in Appendix H.3.

Given the approximated ex-ante value function I evaluate the continuation value

by taking an expectation of the polynomial function, given the distribution of sit+1

given sait. I then back out π̂ using the pseudo-payoffs κ̂ and the continuation value.

G Additional Estimation Results

I now report additional estimation results not reported in 6. This includes tables and

plots of parameter estimates, Gelman-Rubin Convergence tests, and model fit.

The key category specific first stage parameters are given in Figure 16. Meanwhile,

48A small note: The marginal welfare from consuming a lot with subcategory composition zhtl is
just Φiz

h
tl, and does not depend on shit. It does not matter that Φ is a pseudo-payoff object, not a

structural parameter. This is because, if flow-payoffs are affine in shit, so is the pseudo-payoff. The
marginal pseudo-payoff gives the expected benefit going forward of these extra stocks. This does not
interact with any other stocks due to affinity. Therefore, in counterfactuals the expected discounted
benefit of receiving an extra zhtl is the same as under the Choice System, and independent of shit.

49I should account for sampling variation in these finite sample expectations. The large number
of time periods means we expect fairly little variation. I previously considered a bootstrap proce-
dure, however this does not account for correlations between sample expectations and the sample
parameters, so over estimates the posterior variances.
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the subcategory fixed effects and demand parameters are given in Figure 17.

Figure 16: Category Specific First Stage Parameters

Category Shape Scale Scale (other) Maroon Loads Threshold 1 Threshold 2

Baby 0.0856 3090 -379 -963 -9,400 -3,270 -199
(0.0514,0.121) (2840,3390) (-502,-234) (-1,620,-301) (-14,800,-5,550) (-3,520,-3,020) (-240,-164)

Bev 0.0175 2180 -379 -808 -5,200 -3,590 -307
(-0.00124,0.0396) (2080,2290) (-502,-234) (-2,360,800) (-5,790,-4,610) (-4,270,-2,940) (-427,-206)

Baked 0.0856 2270 -379 -963 -11,000 -3,270 -199
(0.0514,0.121) (1980,2600) (-502,-234) (-1,620,-301) (-20,400,-6,380) (-3,520,-3,020) (-240,-164)

Cereal 0.128 4540 -379 -2,340 -2,410 -3,270 -199
(0.0857,0.174) (4340,4740) (-502,-234) (-4,570,-91.2) (-4,530,-816) (-3,520,-3,020) (-240,-164)

Condiment 0.296 3880 -379 425 -7,280 -3,270 -199
(0.235,0.361) (3640,4110) (-502,-234) (-1,460,2260) (-9,830,-4,990) (-3,520,-3,020) (-240,-164)

Dairy -0.0352 2430 -379 -963 -5,980 -3,270 -199
(-0.0685,6.35e-05) (2300,2570) (-502,-234) (-1,620,-301) (-7,090,-5,040) (-3,520,-3,020) (-240,-164)

Frozen 0.0195 2630 -379 -1,110 -6,380 -3,270 -199
(-0.0271,0.0708) (2440,2850) (-502,-234) (-2,740,567) (-9,900,-3,890) (-3,520,-3,020) (-240,-164)

H/B 0.0856 3460 -379 -963 -7,070 -3,270 -199
(0.0514,0.121) (3190,3770) (-502,-234) (-1,620,-301) (-10,500,-4,270) (-3,520,-3,020) (-240,-164)

Meals 0.141 4070 -379 -963 -4,060 -3,270 -199
(0.0999,0.181) (3890,4260) (-502,-234) (-1,620,-301) (-5,400,-2,910) (-3,520,-3,020) (-240,-164)

Meat 0.0856 5180 -379 1110 -12,500 -3,270 -199
(0.0514,0.121) (4760,5570) (-502,-234) (-1,560,3840) (-19,600,-7,510) (-3,520,-3,020) (-240,-164)

Cleaning 0.174 2900 -379 1790 -4,830 -3,270 -199
(0.12,0.232) (2690,3110) (-502,-234) (120,3450) (-6,150,-3,580) (-3,520,-3,020) (-240,-164)

Nutri 0.0856 2280 -379 -963 0 -3,270 -199
(0.0514,0.121) (1770,2910) (-502,-234) (-1,620,-301) (0,0) (-3,520,-3,020) (-240,-164)

Pasta 0.0856 5360 -379 -963 -8,040 -3,270 -199
(0.0514,0.121) (4670,6080) (-502,-234) (-1,620,-301) (-13,800,-3,950) (-3,520,-3,020) (-240,-164)

Snack 0.0391 2230 -379 -776 -6,540 -3,950 -222
(0.0203,0.0602) (2150,2310) (-502,-234) (-2,310,711) (-7,780,-5,540) (-4,650,-3,230) (-316,-135)

Vegetables 0.0856 3620 -379 1100 -2,890 -3,270 -199
(0.0514,0.121) (3330,3950) (-502,-234) (-824,3090) (-4,790,-1,400) (-3,520,-3,020) (-240,-164)

Note: 95% Credible Intervals in parentheses. Several parameters are constrained equal, due to lack of observations.

For the second stage parameters, plots include the net donation means µi and

feedback parameters δi in Figure 18, transport costs and the marginal value of wealth

parameters λi in Figure 19, the standard deviation of the lot specific idiosyncratic

values σl and subcategory weights Φh in Figure 20, and the determinants of the

pseudo-payoff function Φi and Ψi in Figure 21.

Figure 22 reports Gelman-Rubin statistics, as discussed in Gelman et al. (1995),

displaying the proportion of statistics below the recommended cutoffs of 1.2 and 1.1.

I report results for all the food banks, and separately for the ‘Type 1’ food banks

specifically, as these are the most important for the analysis. Broadly I have evidence

of convergence. 5 ‘Type 2’ food banks had implausible parameter estimates and were

dropped. Convergence failure was generally due to multiple modes, and was specific

to food bank × storage type combinations for those who rarely bid on (or never won)

certain types of food. This suggests a problem of non-identification. Because the

model still fits the data well, I do not worry about the lack of convergence.50

50The Gelman-Rubin statistics presented assume the target distribution is approximately normal,
and may fail to detect convergence if the target distribution is sufficiently skewed. I also consider
the convergence statistics for the first and second moments, rather than the full distribution, and
find proportions increase by around 5 percentage points.
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Figure 17: First Stage Parameter Estimates

Subcategory Fixed Effects
Effect of Aggregate Supply on Prices

Note: Panel (B) shows coefficients on aggregate supply, by use for both daily and the previous month’s supply. Points

give posterior means, and 95% Credible Intervals are given by the shaded lines. In non-standardised terms at the

mean of 1600 tons of meals (food that can be consumed as a meal in itself) per month, an increase in the previous 30

day supply of meals by 1000 tons, around 100 loads, decreases the expected winning bid by 350 shares.

Figure 23 plots the estimated and empirical probability a food bank wins a lot

given their bid, where bids are measured in distance from the reservation price. In

estimation I drop the first 60, and the final 150, days and then randomly samples 95%

of the remaining data. The 5% is used as a validation dataset. While the parametric

specification generally fits the data well, it cannot rationalise food banks’ bids being

anchored around zero. However this inaccuracy is not large, even if statistically

significant — the vertical distance between the two lines never exceeds 0.05.

H Robustness

This Appendix investigates how robust my results are to certain key assumptions and

simplifications made in the main text. Robustness exercises are split across the three

stages of my estimation procedure in Appendices H.1, H.2, and H.3 respectively.
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Figure 18: Estimated mean net donations µi and donation feedback parameters δi

(A) (B)

Figure 19: Estimated distance and marginal value of wealth (λi) parameters

(A) (B)

H.1 First Stage

H.1.1 Food bank Specific Beliefs

I implicitly imposed that Γi = Γ: Every food bank faces the same distribution of

rival bids. This permits estimating Γ on the distribution of winning bids only. This

is testable by testing whether the distribution of food bank i’s rivals’ highest bids

is significantly different from the distribution of winning bids using a score test. In

figure 24 panel (A) I present the distribution of test statistics across food banks.

Under the null hypothesis these statistics take a χ2 distribution with 235 degrees of

freedom (the number of first stage parameters). None of these hypothesis tests can
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Figure 20: Lot specific standard deviations and subcategory weights (Φh)

(A) (B)

Figure 21: Estimated Pseudo-Payoff parameters Φi and Ψi.

(A) (B)

reject the null at 10% significance level.

H.1.2 Dependence on Aggregate Supply

For estimation to be feasible I require that beliefs do not depend on any individual

food banks’ state. If equilibrium is sufficiently competitive then no individual food

bank’s behaviour will be able to significantly shift the distribution of winning bids.

If so, then variation in an individual food bank’s state will not shift this distribution

either. The results presented in Appendix H.1.1 support this hypothesis. I also

consider whether the distribution of equilibrium winning bids changes when data

from food bank i and the auctions they won are removed from the data. If i has
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Figure 22: Gelman-Rubin Convergence Statistics

Type 1 food banks all food banks
Parameters Prop < 1.1 Prop < 1.2 Prop < 1.1 Prop < 1.2

Γ 1 1 - -
δi 0.857 0.902 0.774 0.826
µi 0.884 0.893 0.832 0.859
Σi 0.777 0.839 0.824 0.859
Φ̄ 0.98 0.993 0.98 0.993

Φ̃i 0.971 0.993 0.948 0.969
λi 1 1 1 1
σl 0.983 1 0.983 1
Distance 0.964 1 0.976 1
Ψi 0.886 0.918 0.807 0.849
ψ 0.867 0.933 0.867 0.933

Σψ 0.867 0.933 0.867 0.933

a significant effect on the distribution of winning bids, we would expect that the

distribution is different when we drop all the data from i. In figure 24 panel (B) I

present the distribution of score test statistics across food banks. Under the null these

statistics take a χ2 distribution with 235 degrees of freedom. None of these tests can

reject the null hypothesis at 10% significance level.

H.1.3 Independence of Winning Bids

Next, I investigate whether winning bids within a period are conditionally indepen-

dent across auctions. This assumption ensures the joint probabilities of combinatorial

outcomes P (bt,dt|st) can be written as products of the marginal distributions. Given

my quadratic pseudo-payoff parametrisation I only require that winning bids are pair-

wise independent conditional on observed covariates. Write b̄lt for the winning bid. I

investigate dependence with the following specification:

b̄lt = β1b̄l′t + β2xlt + β3xl′t + β4s0
t + εlt

xlt give lot specific covariates, using the covariates included in the first estimation

step. s0
t give time specific common state variables that do not vary across lots. I in-

clude every pair of auctions (l, l′) that occur simultaneously (≈ 800, 000 observations).

Under the null of independence β1 should equal zero. The degree of correlation may

depend on the lot characteristics, so I also consider two relaxed specifications. First
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Figure 23: First Stage Fit, actual vs simulated

(A) (B)

Note: probability of winning given bid, i.e. cdf of winning bids. discont due to ties. simulated values from estimated

distribution vs empirical distribution. averaged over covariates.

I allow the correlation to vary with covariates by interacting b̄l′t with all three sets of

covariates. Second, I allow for triple interactions between b̄l′t, xlt, and xmt.

I consider significance of the b̄l′t coefficients using asymptotic F-tests. However, it

is also important to consider how much variation in b̄lt b̄l′t can explain. If b̄l′t has very

little explanatory power, then the extent of the dependence is minor. Any departure

from independence is unlikely to cause much inaccuracy in my results, since the true

joint probabilities are close to the product of the marginal probabilities.

Results are presented in Figure 25. I can reject the null hypothesis of indepen-

dence at the 1% significance level in all specifications: The independence assumption

is invalid. However, as is evident from examining the R2 values, the degree of depen-

dence is extremely small. The covariates alone account for 42.76% of the variation in

winning bids. Including the b̄l′t interactions is then only able to explain an additional

0.3% of the variation in winning bids. This suggests that winning bids are very close

to being independent, even though we can reject independence. Therefore while I

have found this independence assumption to be invalid, I have also found that it is

likely to be a very good approximation to food banks’ beliefs.
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Figure 24: Robustness: Stage 1

(A) (B)

Note: The figure plots Score Test statistics from two robustness checks. Panel (A) relaxes the restriction that

every food bank has the same equilibrium beliefs, while panel (B) tests whether any individual food bank’s bidding

behaviour has a significant effect on the distribution of winning bids.

Figure 25: Robustness: Independence of Winning Bids

Specification Covariates F test df p-value R2

b̄l′t 1 0 0.1097
Covariates only X 0.4276
b̄l′t X 1 6.49e-66 0.4279
b̄l′t × (xl′t,xlt, s0t) X 424 1.85e-211 0.43
b̄l′t × (xl′t,xlt, s0t, [xl′t × xlt]) X 632 0 0.4313

Note: The F test degrees of freedom and p-value refer to the hypothesis tests that all coefficients on

b̄l′t are equal to zero, where the degrees of freedom gives the number of coefficients being considered.

H.2 Second Stage

H.2.1 Incorporating the Common State

The pseudo-payoff function κ ought to depend on the common state variables s0t, even

though we have several reasons to expect that this relationship will be weak. I consider

a parsimonious specification allowing κ to depend linearly on the demand indices

estimated in the first step, as the common states will only enter the continuation

value, and hence κ, through beliefs. I estimate the following:

κ(si, s
0) = Φis

h
i + Υi[ϑ(s0) · sui ]− sgTi Ψis

g
i
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Where ϑ(s0) · sui gives the elementwise product of the demand indices and the food

banks’ stocks by usage type. Υi is a 1× 5 vector of i specific coefficients. This simple

specification can be considered a linear approximation of any true dependence. If the

dependence is particularly strong, we would expect this to be picked up in a linear

relationship. I interact the index with food banks’ usage stocks to ensure it impacts

their marginal pseudo-payoff. I focus on stocks by usage type as the index affects how

easily the food bank can win the types of food it wants, on behalf of their clients.

In Figure 26 panel (A) I plot estimates of Υi. I focus on just the 28 Type 1 food

banks, as we expect it is the larger food banks who (if any) will be dynamically

strategic. 27.8% of parameters are significant at the 5% significance level. However,

parameters are generally very small. Only two of the significant parameters have

economically significant magnitudes, with a 1sd deviation difference in the demand

indices leading to more than a 100 difference in willingness to pay.

H.2.2 Endogeneity of the Inverse Bid System

In Step 4. of the Gibbs Sampler, I run a bayesian regression on the Observation

Equation. However, this equation is endogenous, featuring Γm(bitm) (generally a

function of υitl) as a regressor. As discussed in Altmann (2022) we do not expect

this endogeneity to be large: Γm(bitm) depends much more strongly on υitl and other

variables. Nonetheless, I now investigate this suggestion.

As in Altmann (2022) we use zgtl(z
g
tl + 2sgit)

T as an instrument for zgtl(z
g
tl + 2sgit +

2
∑

m6=l Γm(bitm)zgtm)T . It is clear how this instrument is both valid and relevant. We

instrument using variation in bids caused by variation in the characteristics of that

lot only, excluding the effect of other lots.

I do not run a full bayesian instrumental variable procedure, which would require

augmenting my sampler to include instruments and require normality assumptions

on the endogeneity. This is difficult to justify given we observe Γm(bitm) and know

it is far from normal. Instead, for each draw of my unobserved states I run (non-

bayesian) IV and look for evidence of endogeneity. This heuristic procedure means

we cannot perform valid inference, but if the degree of endogeneity were severe it

should shed light on its existence. In particular, I treat the augmented data from

steps 2 and 3 of the sampler as ‘known’, then use the instrument to form a control

function and proceed in the standard frequentist way. I repeat this exercise for each
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of the 1,000 draws of augmented data (giving me something similar to a credible

interval). The diagonal coefficients on these control functions (corresponding to the

endogeneity of the diagonal elements of Ψi) are plotted for the 28 Type 1 food banks

in Figure 26 panel (B). Results are normalised by the corresponding components of

Ψi to highlight the magnitude of the relative endogeneity. The results are clustered

close to 0, suggesting that if there is endogeneity it is extremely small. All but 1 have

absolute magnitude of the endogeneity less than 10%.

Figure 26: Robustness: Stage 2

(A) (B)

Note: Panel (A) plots posterior means and 95% credible intervals of the demand index coefficients. Estimates give

the effect on Willingness to Pay of a 1sd increase in the demand index for that usage type. Panel (B) plots means

and 95% (approximate) credible intervals of the control function parameters, presented as proportions of Ψ.

H.3 Third Stage

The quadratic approximation made in the third estimation step is technically incom-

patible with the parametric assumptions made in the second step. However, this

approximation fits well. I consider the R2s from forming this least squares approxi-

mation. 90% of these value lie between 0.99 and 1, with the lowest at 0.91. The fit is

strong because of the quadratic term which appears in equation 9.
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I Simulation Details

In this Appendix I describe my simulations: First, the Choice System, then the Old

System. The other mechanisms only involve minor alterations of the Old System.

In the simulation for parameter draw r I use the corresponding sampled xrit and υrit,

thereby maintaining correlations between these and the model parameters. This en-

sures results are slightly more robust to model misspecification. Meanwhile, to assess

model fit I draw the lot-specific values υit from their estimated posterior distributions,

else the simulated bids are trivially the same as observed bids.51

I.1 Choice System

Because I observe and estimate my model on equilibrium bidding data under the

Choice System, I do not need to solve for equilibrium beliefs or continuation values.

I can instead use the estimated beliefs and pseudo-payoffs. This approach would not

be valid if I wanted to consider changes to the Choice System, such as changes in

food banks’ budgets. The central problem then concerns the bidding function, as this

involves a complex combinatorial problem of deciding which combination of lots to

bid on. I use a greedy algorithm for this purpose. Beginning with no auctions entered,

I iteratively add the lot that yields the highest marginal improvement in payoffs, then

re-optimise bids. Because I impose Ψi is strictly negative, imposing gross substitutes,

this algorithm is guaranteed to find the global optimum.

I.2 Old System

I treat time as continuous, and each day is of length 1. Therefore local donations

and offers of food from Feeding America are received continuously during the day.

To ensure results are easily comparable across the Choice System and Old System

simulations, when evaluating welfare I treat local donations and flow payoffs as only

accruing at the end of the day. To evaluate the equilibrium value function I treat

both these objects as continuous.

51I do not find equilibrium for all 1000 posterior draws of the parameters, as this would require
too much computation power. Instead, I use a random sample of 30 parameter draws. I then average
value functions over these 30 draws, dropping any that did not converge (≈ 2%). I find relatively
little variation in equilibrium objects across parameter draws.
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I.2.1 Set Up

Food is donated to Feeding America at some exogenous rate. Conditional on arriving,

the load has various characteristics. The rate and probability of these characteristics

are taken from the empirical distribution. What matters in the agent’s problem is

their belief about the rate at which they are offered food, and the probabilities of

characteristics they are offered. Food banks’ positions in the queue are determined

exactly as described in Prendergast (2022).

Net donations arrive at exogenous Poisson rate qi. Conditional on arriving, the net

donation x̃it is normally distributed: N(δ̃sit + µ̃i, Σ̃i). The parameters δ̃, µ̃i, Σ̃i are

set so that when we integrate over the day’s net donations, the resulting distribution

has the same mean and standard deviation as estimated. Finally, I normalise qi to 1,

as this is not identified from my discrete data.

The lot specific payoff is the same as in the text. The deterministic flow-payoff is

accrued at every instant, so that if i accepts load l at t they receive υilt + π̃(sit + zl),

or π̃(sit) if they reject. The payoff function π̃ is set so that integrating over a day, if

stocks do not change, they receive the same payoff as in the discrete time case.

I discretise the individual stock space using a grid formed of eleven evenly spaced

points along each dimension. Points range from one interquartile range below the 2.5%

percentile of sampled stocks, up to one range above the 97.5% percentile. I use flexible

Bernstein polynomials basis functions to interpolate the Value Function. These poly-

nomials are convenient as I can easily form expectations of the value function after

receiving normally distributed net donations, and use simple matrix multiplication to

evaluate expectations of being offered lots with various characteristics.

I.2.2 Equilibrium

Write the agent’s value function as V (t, si, s0). This gives their presented discounted

value from state (si, s0) at time t. I augment the common state to include the newly

defined priorities and Goal Factors. If the food bank is offered a load at t they must

be at the head of the queue, and so have the highest priority. If they are offered load

l characterised by (υilt, z
g
lt, z

h
lt), they will accept if υilt +V (t, si + zgilt, s0) ≥ V (t, si, s0).

The agent believes that Feeding America will offer them a load at Poisson rate

pi(t, s0). In principle this should depend on the state of every food bank, including i,

however I will assume that food banks do not observe each others’ states. The agent
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then believes that, conditional on receiving an offer, the load will have characteristics

(υi, z
g, zh) with probability density f ci (υi, z

g, zh; t, s0).

I assume a Markov Perfect Equilibrium in symmetric strategies, as defined in sec-

tion 4. This requires that food banks make optimal accept/reject decisions given

beliefs about p and f c, and that their beliefs are consistent with the observed reali-

sation of the rates at which Feeding America offers them loads. As I have assumed a

stationary equilibrium, I require that p and f are conditionally independent of t.

I assume food banks do not observe others’ stocks, nor when loads are offered to

any one else (hence aggregate supply is also unobserved). I therefore assume the only

objects used to form their beliefs are si, their own (relative) Goal Factor, and the

time since their last offer τ . The offer rates pi and the distribution of offered lot

characteristics f ci are food bank specific. In principle I should allow p to depend on

τ , however for simplicity I assume it does not.52 I also assume food banks beliefs

do not change conditional on the previous history of offers. That is, food banks do

not infer from frequent offers that offers will be more frequent in future. For f ci ,

I split lots into the same 60 discrete category combinations used for the lot specific

variances σl, detailed in Appendix F.2. Therefore f ci can be interpreted as conditional

probabilities. Then, conditional on the category combination, I assume food banks

believe that, in equilibrium, the distance between the lot and a given food bank is

normally distributed with some mean and variance. I also assume that, conditional

on category combination, food banks believe zh is also normally distributed.

I.2.3 The Optimal Control Problem

Under the assumptions outlined above, we can write the value function as Vi(τ, si).

Food bank i, that is offered load l, accepts the load if υil + Vi(0, si + zgl ) ≥ Vi(0, si).

The Hamilton-Jacobi-Bellman differential equation is given by:

(ρ+ pi + qi)Vi(τ, si) = qiEX [Vi(τ, si +X)|si] + π̃(si) +
∂Vi(τ, si)

∂τ

+ pi
∑
c

Eυ,z[max {υil + Vi(0, si + zl), Vi(0, si)} |c, si, τ ]f ci (12)

52This is unlikely to be a problem, since, for most food banks, offers occur so frequently it is
unlikely they ever have to wait particularly long before receiving the next offer.
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Where ρ gives the discount rate (= (1 − β)/β). To solve this differential equation

recognise that the solution must be independent of τ . The equation can then be

solved using numerical methods,

For given Vk
i and beliefs (pki , f

ck) I evaluate Equation 12, using Bernstein Polyno-

mials for interpolation. I use successive approximations and switch to a dampened

Newton-Kantorovich algorithm when progress slows. I then simulate the Old System

using these value functions, before updating beliefs, (pki , f
ck
i ), using a frequency esti-

mator. I repeat this process until the rates and estimated probabilities change by a

total less than 10−4× the euclidean norm of (pki , f
ck
i ).

I.2.4 Other Mechanisms

The Sequential Offer Mechanism is done exactly the same as above, but allowing

every load of food to be offered to every food bank. The two Closest mechanisms are

exactly the same, but offering food by order of distance from the lots’ origin. The

random allocation does not require solving for equilibrium.

For the Sequential Auction mechanism I exploit that, in equilibrium, lots will

always be allocated to the food bank with the highest marginal benefit (if this is

positive). Therefore, I simulate the probability that a given food bank has the high-

est marginal benefit (essentially, highest bid), given their value. In this case, the

Hamilton-Bellman-Jacobi equation can be written as:

(ρ+ pi + qi)Vi(τ, si) = qiEX [Vi(τ, si +X)|si] + π̃(si) +
∂Vi(τ, si)

∂τ

+
∑
c

pcEυ,z[Γ̃c(υil+Vi(0, si+zl)−Vi(0, si)|c) max {υil + Vi(0, si + zl), Vi(0, si)} |c, si, τ ]

(13)

Where pc gives the rate of the arrival of donations with characteristics c, and

Γ̃c(υil +Vi(0, si+zl)−Vi(0, si)|c) gives food bank i’s belief about the probability they

have the highest value. Γ̃ is very similar to the Γ marginal win probabilities from

the main model, so I assume the same Generalised Extreme Value parameterisation,

with a distinct set of parameters for each set of characteristics. Numerically solving

for equilibrium then follows as for the Old System.
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