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Abstract

Feeding America, an organisation responsible for feeding 130,000 Amer-

icans every day, distributes donated food among a network of participating

food banks. Feeding America’s allocation mechanism, the ‘Choice System’,

uses first-price auctions to allow food banks to signal which types of food they

need from Feeding America. This provides food banks a large degree of choice

over the types of food they receive. This paper examines the welfare and distri-

butional consequences of enabling this choice. I apply a dynamic auction model

to Choice System bidding data, estimating the distribution of food banks’ het-

erogeneous and time-varying needs. I then use these estimates to compare

the Choice System to the previous allocation mechanism employed by Feeding

America which gave food banks very limited choice. I estimate that the Choice

System increased welfare by the equivalent of a 17.1% increase in the quantity

of food being allocated.
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1 Introduction

Organisations are regularly faced with the problem of allocating scarce resources as

efficiently and as equitably as possible. Governments must decide how to allocate

contracts to contractors, local authorities must allocate school places to students,

and hospital boards must allocate kidneys to transplant patients. Feeding America,

a not-for-profit responsible for feeding 130,000 people every day, must decide how to

allocate truckloads of donated food among its network of regional food banks.

The efficient and equitable allocation of food is a priority for Feeding America,

to ensure that food banks can keep up with the ever-increasing demand for their

services. Like many food bank networks around the world, Feeding America previ-

ously employed a mechanism that allowed food banks very little choice in the food

they received. Under this mechanism, referred to as the ‘Old System’, food banks

would queue until they were offered a truckload of food, and return to the back of

the queue regardless of whether they accepted or rejected this load. This mechanism

was unpopular among food banks as they were rarely offered the types of food they

needed. Efficient central planning is difficult because of unobserved heterogeneity in

food banks’ needs: Different food banks need different food at different times.1 This

heterogeneity arises because food banks in different parts of the country have access

to different types of food from their local donors, and these types of food are liable

to change over time. Feeding America’s current allocation mechanism, the ‘Choice

System’, consists of an auction market in which food banks are given an amount of

virtual currency to bid on loads of donated food (Prendergast, 2017). This gives food

banks a strong degree of control, and choice, over the food they receive.

In this paper I use a rich model of food bank bidding behaviour to investigate

welfare under the Choice System, compared to alternative mechanisms that allow food

banks varying degrees of choice. I develop a novel empirical strategy to estimate food

banks’ demand functions despite not observing their inventories, applying a dynamic

auction model to detailed Choice System data. I exploit the panel dimension of the

data to allow demand to vary across food banks and over time, as different food

1I use the term ‘needs’ to capture both what a food bank has a preference for, on behalf of their
clients, as well as what they have room for in their warehouse. In this way, the term is intended
to capture the determinants of a food bank’s demand function, or their revealed preference from
observed bids - a food bank with a warehouse full of cornflakes may still have positive marginal
utility of additional cornflakes, but due to capacity constraints will not bid on additional cornflakes.
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banks have different storage capacities, cater to different numbers of clients, and

receive different types of food at different times from their local donors. I then use

these estimates to evaluate equilibrium allocations under a number of alternative

allocation mechanisms. Counterfactual simulations demonstrate that, relative to the

Old System, the Choice System is extremely effective at achieving Feeding America’s

welfare and equity goals: Welfare is 17.1% higher under the Choice System than the

Old System. This is roughly equivalent to an additional 50 tons of food allocated

each day, enough to support an additional 22,300 people.

In order to investigate food banks’ needs, and so evaluate welfare under various

allocation mechanisms, I first develop a structural model of food banks bidding for

food on the Choice System. The structural model follows the empirical auction

literature by building on the dynamic multi-object auction model of Altmann (2022),

which unifies the models of Gentry et al. (2020) and Jofre-Bonet and Pesendorfer

(2003). Descriptive evidence demonstrates the need for both the dynamic and multi-

object framework: First, when multiple similar loads are auctioned simultaneously

food banks are less likely to bid on any given load. This suggests that similar loads

are substitutable, and requires a multi-object model to account for the simultaneous

auction environment. Second, food banks certainly act as forward looking bidders,

given that auctions happen so frequently. Conditional on winning a load, food banks

are less likely to bid on similar loads on subsequent days. This suggests food banks

treat loads as durable goods subject to storage costs, emphasising the need for an

empirical model that accounts for the dynamic environment.

The importance of choice depends on the degree of unobserved heterogeneity in

food banks’ preferences and storage costs, as well as the degree of substitutability of

different types of food. The model incorporates this in three key ways. First, food is

classified by how it is stored (capturing storage capacity), and how it is used. It is

further divided into 15 broad categories and 164 subcategories, each associated with

distinct preference parameters. Second, the long panel (around 900 days) allows me to

estimate distinct parameters for each food bank, allowing for permanent heterogeneity

across food banks. Finally, I allow for time-varying unobserved heterogeneity, which

I attribute to the fact that I do not observe food banks’ stocks of various types of

food. This captures how food banks may irregularly receive donations from their

local donors and irregularly give out food to clients.

The main estimation challenge is that I do not observe food banks’ stocks. Current
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stocks are a key determinant of demand — if a food bank suddenly stops bidding on a

particular type of food it might be because, unobserved by the econometrician, they

recently received this from a local donor. A methodological contribution of this paper

is to develop a procedure to estimate bidders’ values in a dynamic multi-object auction

environment when individual state variables (stocks) are unobserved. I overcome this

problem using a Gibbs Sampling procedure, employing a data-augmentation step to

draw the unobserved stocks from their conditional posterior distribution. The model

is identified through observed variation in winnings which drives systematic variation

in bidding behaviour. The change in the propensity to bid immediately after winning

a lot identifies food banks’ storage capacities: After a recent win, capacity constrained

food banks will stop bidding on that type of food. Meanwhile, the length of time

before food banks return to their average bidding propensity enables identification

of the unobserved state transition process: If it takes them a long time to return to

bidding on a particular type of food, this suggests they generally have access to that

food from their local donors. To the best of my knowledge this is the first paper to

estimate a model of this type.

I employ the three step estimation procedure introduced in Altmann (2022). In

the first step I estimate equilibrium beliefs by estimating the conditional distribution

of winning bids. I then invert food banks’ first order conditions for optimal bidding,

obtaining an inverse bidding system as in Guerre et al. (2000) and Gentry et al. (2020).

In the second step, using the inverse bidding system, I estimate the distribution of

food banks’ ‘Pseudo-Static’ payoffs from winning combinations of lots. This means

I estimate the sum of bidders’ flow payoff and their discounted continuation value -

essentially estimating the model as though food banks were myopic. During this step

I also estimate the transition process for food banks’ stocks. Finally, in the spirit

of Jofre-Bonet and Pesendorfer (2003), the continuation value can be written as a

function of observed bids, beliefs, and the pseudo-static payoff function. Therefore,

in the third step I evaluate the estimated continuation value, before backing out the

distribution of flow payoffs from the definition of the pseudo-static payoffs.

I find significant evidence of demand heterogeneity both across food banks and

over time. I estimate large differences in access to local donors. For example, I find

that food banks in urban areas generally have little access to fresh food, such as

produce, so get much of it from Feeding America. This contrasts with more rural

food banks which rarely need fresh food from Feeding America. This means it is
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important for food banks to be able to sort across types of food. Likewise, some

food banks’ local donations are estimated to be very variable over time, meaning it is

important for them to be able to pick and choose different types of food as and when

they are most needed. I estimate that day to day variation in stocks account for 45%

of the daily variation in bidding behaviour. The model also suggests that food banks

go through extended periods with high stocks, during which they very rarely place

bids, and periods with low stocks, during which they bid very frequently. Therefore,

over the long-run, I estimate that 72% of the variation in bidding behaviour can be

attributed to unobserved variation in stocks.

Using the estimated model I consider equilibrium allocations under a number of

alternative mechanisms that permit food banks varying degrees of choice. First, I

consider the mechanism previously employed by Feeding America (The ‘Old System’).

This allows me to quantify and qualify the benefits of choice and the Choice System

over lack of choice, building on the evidence presented in Prendergast (2017) and

Prendergast (2022). I find that welfare is 17.1% higher under the Choice System

than under the Old System. The majority of this welfare gain is due to food banks

having more control over their stocks, better tailoring their allocations to fit their

most pressing needs first. This is as opposed to accepting sub-optimal food when

they face significant storage costs; food that may be used more effectively by another

food bank at that point in time. As a result, around 85% of food banks are estimated

to be better off under the Choice System.

Feeding America’s allocation problem is faced by numerous other food bank net-

works around the world, such as the European Federation of Food Banks (FEBA),

and Food Bank Australia. Therefore I also consider mechanisms employed (often

implicitly) by some of these other food bank networks.2 A mechanism that offers

food only to the nearest food bank, aiming to minimise transportation costs but al-

lowing food banks even less choice than the Old System, achieves only 65% of the

welfare under the Old System. This result arises because even under the Old System

each load was offered to multiple food banks. Many food bank networks, including

2Other food bank networks often face somewhat different problems, in both scale and scope, to
Feeding America. For example, transportation cost are known to be a larger factor in Australia.
Likewise, FareShare (U.K.) face an allocation problem closer to an individual food bank allocating
food to its associated food pantries. Therefore the results from this paper cannot be exactly applied
to these other settings. That said, certain broader lessons are still valuable to these organisations.
Future work, ideally using data from these other settings, is certainly needed.
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the Trussell Trust in the U.K., implicitly use this mechanism by not allocating food

centrally and instead linking food banks up with nearby donors. However, even if

food is offered to every food bank (in order of distance), this is only marginally bet-

ter than the Old System, but much worse in its distributional effects — food banks

which happen to be well situated consume the most valuable food. This is because I

estimate that transportation costs are not a large cost factor for most food banks.

The Choice System allocates food simultaneously in batches, rather than allocating

food as donations arrive. Among other benefits, this ‘batching’ ensures food banks

have information about all the food being allocated on a given day when making

decisions, giving them more control over their allocations. The majority of other

mechanisms employed for food allocation are sequential in nature.3 I simulate an

‘efficient’ sequential mechanism and find that welfare is still around 12% lower than

under the Choice System. This is because, while food is always allocated to the food

bank that values it most, food banks are not always allocated the type of food they

need the most. Then, when a donation does come along that they really want, they

no longer have capacity to store it. This is essentially the same effect driving the

poor welfare results for the Old System.

The paper proceeds as follows: Section 1.1 discusses how this paper contributes

to the related literature. Section 2 describes the institutions and data being studied.

Section 3 provides descriptive evidence that food banks have strongly heterogeneous

preferences, as well as detailing several descriptive facts that must be taken into

account in any empirical model. Section 4 outlines the empirical model of food bank

bidding behaviour, making clear the assumptions necessary for identification. Section

5 describes the estimation procedure and parametric assumptions employed for the

structural model, while Section 6 details the estimation results. Section 7 details the

counterfactual mechanism considered before presenting the simulation results.

1.1 Related Literature

This paper contributes to the literatures on empirical market design and empirical

auction econometrics.

Empirical market design is a growing literature analysing preferences and alloca-

tions in centralised assignment markets, often employing techniques from Empirical

3Theoretical results suggest this is suboptimal (Akbarpour et al. (2020), Baccara et al. (2020)).
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Industrial Organisation. There is an extensive literature empirically analysing the al-

locative effects of centralised school choice and medical residency matching (see, for

example, Agarwal and Somaini (2020) and Agarwal (2015)). However this literature

typically employs static models, since students are only assigned a school once. The

food allocation problem is both multi-object (many food banks are allocated many

loads of food) and dynamic (food must be allocated repeatedly over time).

On the multi-object side Prendergast (2017) and Prendergast (2022) also study

Feeding America’s transition to the Choice System. My structural approach is com-

plementary to their descriptive and sufficient statistic approaches, allowing me to

perform detailed welfare analysis and consider additional counterfactuals of inter-

est. This paper employs richer data that is disaggregated at the auction level and

includes information on losing bids. By studying the exact timing of food banks’

consumption, as well as losing bids, I gain a more detailed understanding of how

food banks make inter-temporal substitutions. This allows me to simulate alterna-

tive dynamic allocation mechanisms, for example investigating the benefits of batch

versus sequential allocation. Budish and Cantillon (2012) study the course allocation

problem, which also uses a system of virtual currency to allocated MBA courses to

students. Similarly, Fox and Bajari (2013) use methods from the stable matching

literature to measure the efficiency of the 1994 US spectrum auction. Preference het-

erogeneity is an important theme in these papers, even though their data is primarily

cross-sectional. In contrast, in this paper I exploit the panel-dimension of the data,

allowing unrestricted individual specific heterogeneity.

The empirical dynamic assignment literature often consists of evaluating waiting

list design. Agarwal et al. (2020) and Agarwal et al. (2021) study the mechanisms

used to offer deceased donor kidneys to transplant patients. Likewise Waldinger

(2021) studies the allocation of public housing. Similar to this paper, they assess the

value of giving agents choice over their allocations, considering the trade-offs between

efficiency and other concerns of policy makers. Other work analysing dynamic multi-

object allocation problems include Verdier and Reeling (2022) on hunting licenses,

Gandhi (2019) on nursing homes, and Liu et al. (2019) on peer-to-peer ride sharing.

This literature highlights the importance of heterogeneity in preferences and match

values, but typically do not consider the role of heterogeneity over time, which is an

important factor in the food allocation problem.

This paper applies the dynamic multi-object auction model of Altmann (2022),
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which combines the models of Jofre-Bonet and Pesendorfer (2003) and Gentry et al.

(2020). Unlike these papers reservation prices and endogenous entry are important

in my application, with the average bidder only bidding on around 2% of auctions. I

draw from Groeger (2014) and Balat (2013), who both introduce models of partici-

pation in dynamic first-price auctions. In the multi-object setting endogenous entry

is structurally more complex due to the inherent combinatorial problem, and stan-

dard estimation procedures become computationally infeasible. The focus on a large

auction market is similar to Backus and Lewis (2016) who introduce a framework

for analysing dynamic bidding in a large single-unit second-price auctions, studying

eBay’s second hand camera market. Their framework has been employed a number of

times, for example in Bodoh-Creed et al. (2021) and Hendricks and Sorensen (2015).

To my knowledge, this is the first empirical auction paper to consider the role of

time-varying unobserved heterogeneity.4

2 Institutional Background and Data

This section describes the Choice System and the Old System. Details of these

mechanisms come from Prendergast (2017). Then in Section 2.2 I describe the data

used in this paper.

2.1 Feeding America

Feeding America, formerly America’s Second Harvest, began in 1976 as a collection of

food banks that would solicit donations from local grocery stores and farms. As ad-

ditional food banks joined their network it became necessary to co-ordinate resource

sharing. In 2005, at the recommendation of a task force consisting of economists and

food bank managers, they replaced the Old System with the Choice System.

4This paper also relates to the literature on the identification of dynamic models in the presence
of unobserved states, building on Kasahara and Shimotsu (2009) Hu and Shum (2012), and Connault
(2014). My identification argument is similar to that of Berry and Compiani (2020), using an
instrument (observed winnings) to identify changes in the unobserved state. Unobserved stocks are
also a key feature of the inventory models of Hendel and Nevo (2006) and Erdem et al. (2003) among
others. The key distinction between my model and these examples is that agents also receive food
from an external source - local donors. These local donations are expected to be a key driver of
heterogeneous bidding behaviour across food banks and across time.
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Many of Feeding America’s associated food banks operate as standard food pantries

- directly giving out food to those in need. However, the majority of food banks act as

food distributors; themselves responsible for storing and sending out food to hundreds

of local food pantries.

2.1.1 The Old System

Under the Old System any truckload of food donated to Feeding America was offered

to the head of a queue. The potential recipient had a few hours to accept or decline

the load, before it was offered to the next food bank. This meant that each load

could only be offered to around ten food banks before being returned to the donor.

To discourage rejections, food banks would return to the back of the queue regardless

of whether they accepted the loads. A food bank’s relative position in the queue was

determined jointly by whether they had recently been offered food, and their ‘Goal

Factor’, a measure of the poverty in their local area relative to the national average.

A higher Goal Factor implies more mouths to feed, so these food banks should be

offered more food. Transportation costs were paid by the food banks, many of whom

have fleets of trucks and lorries for this purpose.

The type of food offered in each truckload was essentially random, so that on

average food banks received the same quantities of food per mouth. This would have

been optimal if food banks all had the same preferences and capacities. In reality,

different food banks needed different types of food at different times. Food banks use

food from Feeding America to substitute for food they do not receive from their local

donors. A food bank surrounded by farms is likely to have a weaker preference for

fresh produce than a food bank in a city. Feeding America wanted to improve welfare

by taking account of differing needs. They decided to use a market mechanism to

give food banks power over the allocation they receive.

2.1.2 The Choice System

The Choice System consists of simultaneous first-price sealed-bid auctions. Two

rounds of auctions occur each day, five days a week, with around 30 lots auctioned

each day. Bidders observe the previous winning bids for a particular type of food,

making it easier for food banks to know how to bid. Outcomes of auctions that

occur simultaneously are independent, and bidders cannot place combination bids.
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Winners generally pay to transport their winnings.

Food banks bid with a virtual currency called ‘shares’. Other than storage and

transportation costs, the only opportunity cost a food bank faces when bidding is

that they will have fewer shares to bid on other lots. Feeding America can control

which food banks have the most shares, ensuring that food banks with larger Goal

Factors are allocated more shares and, consequently, receive more food (in the spirit

of the Second Welfare Theorem). All spent shares are redistributed each night.5 Food

banks can save shares from one day to the next. Those with less than the median

allocation of shares have access to interest-free credit, so that food banks can smooth

their consumption over time. The money supply is set to ensure that prices remain

constant (on average) over time, reacting to changes in the supply of food.

Food banks can bid negative amounts, down to a reserve price of −2000 shares.

This incentivises food banks to accept undesirable loads, helping Feeding America

maintain good relations with their donors by ensuring that every lot is graciously

accepted. This had been a problem under the Old System - donors whose donations

are refused are less likely to donate in future.6 As all lots are eventually sold, donors

now feel like their donations are always graciously accepted, and so they continue

to donate. On average 21% of lots are sold at strictly negative prices, and 10% are

sold at the reservation price.7 Negative prices occur because food banks are capacity

constrained. The marginal value of an additional load of food to a food bank with

an already full warehouse is negative. The extra load will likely spoil and have to be

thrown away, which creates a bad image.

The introduction of a market mechanism had the potential to disadvantage smaller

food banks. Credit use, joint bidding and fairness committee mechanisms were intro-

duced to alleviate this risk. Smaller food banks often choose to bid jointly, because

they might not need a whole truckload of a food. A small number of food banks

bid jointly for more than half their winning bids. Otherwise, food banks rarely place

joint bids. For this reason I generally ignore the decision to bid jointly. Discussion

5The redistribution creates a small positive externality. For every share spent, an individual
food bank will receive around 1/210 of that share, which is negligible.

6This aspect of the Choice System contributed to the supply of donations to Feeding America
increasing drastically since the introduction of the mechanism. Feeding America itself would often
turn down donations under the Old System, fearing that no food bank would accept the load.

7While 22% of lots are not sold right away, most are sold the following day. Lots not sold
right away are predominantly either multiple loads of fresh produce or large bottles of water. The
numbers are skewed by 130 loads of 8 litre bottles of water that were sold over several months.
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of how I consider joint bidding is given in Appendix A.1.3. Feeding America also

employ a fairness committee to enable food banks to raise any problems they have

with the Choice System. So far there have been no complaints, and food banks have

universally reported great satisfaction with the Choice System.

When multiple homogenous lots are auctioned simultaneously lots are allocated

to the top bidders (who pay their bid) until the lots have been exhausted. These

auctions resemble discriminatory first-price auctions, rather than simultaneous auc-

tions. 7% of auctions fall into this category. The main text ignores these auctions,

while estimation and analysis does not. Details of how the model and estimation

procedure are extended to account for these auctions is given in Appendix E.

Feeding America allows food banks to sell the food they receive from local donors,

making up 4.5% of lots. There are several distortions in this submarket: For equity

reasons Feeding America taxes and redistributes shares earned, reducing incentives

for foodbanks to sell. Similarly, foodbanks have always happily shared excess food

with one another for free and selling one’s excess is looked down on by the foodbanks.8

In this paper I generally ignore food banks’ decisions to sell food. This is because

selling food is rare, particularly for the food banks most reliant on the Choice System.

Incorporating the decision to sell adds too much complexity to the analysis.

2.2 The Data

Three sources of data were used for this paper. The main data is the Choice Sys-

tem dataset, which is not publicly available and was received directly from Feeding

America. I also make use of an auxiliary data-set enabling the identification of the

locations of 85% of the food banks. Lastly, I use information from Feeding America’s

on-line food poverty tracker tool to estimate Food banks’ goal factors.9 Detailed

discussion of how I clean and categorise the data are included in Appendix A.

2.2.1 Choice System data

The Choice System dataset contains information on 26, 617 individual auctions run

over the course of 44 months from January 2014, covering 165 food banks. The data

8Reported in Planet Money, NPR (2015).
9This tool is accessible at https://map.feedingamerica.org
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included both winning and losing bids from each food bank, as well as information

on the food composition and location of each lot.10

The sheer volume of types of food being auctioned makes categorisation necessary.

I split food into 15 categories, largely the same categories used in Prendergast (2017).

To capture different types food being imperfectly substitutable I further split food

into 164 subcategories.11 To capture storage costs I categorise food into five storage

types: Dried, Tinned/Bottled, Refrigerated, Fresh, and Non-Food.12 Many loads

contain multiple types of food. I allow lots to contain up to four different items

which I assume evenly make up the load, unless explicitly stated otherwise.

Figure 1 presents descriptive statistics on the lots being allocated, split by storage

method. Several things are evident. First, that many lots are allocated simultane-

ously. Second, that lots come in very variable sizes. Third, only a small number of

bidders bid on any given lot, and a large proportion of lots sell for negative prices -

particularly Fresh produce and low quality beverages (included in the Tinned storage

type). This suggests low demand for these types of food.13

2.2.2 Auxiliary Data

Food banks in the main Choice System data were anonymised. Using data from

Feeding America’s Food Bank Locator tool14 I identified the locations for 85% of

food banks, who together consumed just over 98% of all food on the Choice System.

Figure 3 shows the approximate locations of foodbanks (black spots) and the origins

of lots coming to auction, by storage type.

10Importantly, I do not observe whether any given auction happened in the morning or afternoon.
I assume that all auctions in a day happen at the same time. This presents a potential weakness
of this analysis, however anecdotal evidence suggests that most food banks bid in only one auction
round each day. This was suggested by Canice Prendergast, one of the original designers of the
Choice System. If food banks are optimally choosing not to bid on any auction in a given round
then the inaccuracy of my results will be minor. In future I will use simulations to consider the
substantive impact on my estimates.

11See Appendix A for additional discussion of how food was categorised.
12Fresh food includes produce and baked goods, that generally have limited shelf-life. Refrig-

erated includes anything that needs to be stored in a fridge or freezer, such as meat and dairy.
Tinned and Bottled food includes anything with a long shelf-life that is tinned or bottled, ranging
from baked beans to bottled water. Dry food captures long shelf-life food such as cereal, pasta, or
cookies. Non-Food includes anything not considered food, including cleaning and beauty products.

13Figure 1 shows that very few bidders are observed bidding in any given auction. This may
suggest auctions are uncompetitive. In practice it is unlikely that food banks collude, given how
this harms non-colluding food banks and that most food bank managers are extremely prosocial.

14Accessible at https://www.feedingamerica.org/find-your-local-foodbank
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Figure 1: Descriptive Statistics, across lots

Dried Tinned Fridge Fresh Non-food Mixed Total

Daily lots
(mean) 9.19 5.3 4.32 10.56 2.52 4.6 29.36
(std) 5.95 3.81 2.92 5.79 2.06 3.22 13.32

Pounds per lot
(mean, 000s) 22.5 34.3 28.3 40.1 20.4 27 28.8
(std, 000s) 9.7 8.3 10.1 3.9 12.2 10.6 11.3

Winning bid
(mean) 2106 1085 2704 211 2967 2481 1802
(std) 5329 6414 6331 779 6436 5176 5375

No. bidders
(mean) 2.95 2.7 2.54 1.22 3 2.78 2.59
(std) 3.14 3.5 3.17 0.64 3.26 3.06 3.04

% Allocated 93 83 91 71 91 96 88
% Negative prices 35 47 28 19 28 27 32

Note: Excludes multiple homogeneous loads. Mixed loads are presented as a separate type for

this figure only. Winning bids includes the reservation price when no bids are received. ‘Allocated

immediately’ refers to the percentage of lots that receive at least one bid above the reservation price.

Negative prices include loads allocated for 0 shares.

I did not receive access to recent Goal Factor figures. However, this data can be

constructed using the locations of food banks, formulae given in Prendergast (2022),

and information on local poverty and food insecurity rates from Feeding America’s

‘Hunger in America’ on-line resource. See Appendix A for additional details on how

I located food banks and constructed Goal Factors. Figure 2 summarises the relevant

demographic information and bidding behaviour of food banks. The key take-way is

that characteristics and behaviour differ drastically across food banks, suggestive of

their heterogeneous needs.

3 Descriptive Evidence

In this section I do two things. First, in Section 3.1 I present descriptive evidence of

heterogeneity. That is, heterogeneity in the food being allocated, and heterogeneity

in needs across food banks and over time. This evidence highlights the value of choice

for food banks. Second, in section 3.2 I investigate the key determinants of bidding,

putting together several stylised facts motivating my model’s key features.
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Figure 2: Descriptive Statistics, across food banks

Mean p10 p25 p50 p75 p90

Population (000s) 1913 384 676 1270 2543 4385
Poverty (000s) 284 64 99 191 373 645
Goal Factor 1 0.16 0.36 0.62 1.19 2.46
Bids Placed 380 13 44 166 442 844
Average Bid 3601 546 1202 2509 4067 6903
Lots Won 159 6 26 70 177 351
Average Payment 3803 485 1060 2476 4507 7414

Note: Statistics are calculated by food bank, then quantiles are evaluated across food banks. The

mean Goal Factor is normalised to 1. Population and Poverty figures refer to the number of people

in a food bank’s catchment area.

3.1 Evidence of Heterogeneity

Under the Old System every food bank was, ex ante, offered the same allocation. If

food banks have heterogeneous needs, unknown to the social planner, welfare might

be increased by allowing food banks greater choice in their allocations. Therefore

heterogeneity is a key determinant of the value of choice.

3.1.1 Differences Across Lots

There is a large degree of heterogeneity across different types of lots. Lots attract

significantly different bids depending on their subcategory.15 Figure 4 shows average

winning bids across subcategories, controlling for the censoring caused by the reser-

vation price. These averages are generally statistically different from one another,

and a Likelihood Ratio test that subcategory coefficients are equal within a category

is rejected at 1% significance level for all but the Pasta category. However there is

still much variation in winning bids within subcategories: Variation in subcategories

accounts for just 30% of the variation in winning bids. It is clear there is a great deal

of heterogeneity between lots, and that these lots cannot be substituted one for one.

15Lots also sell for significantly different prices depending on the category. Goods such as cereal
and pasta sell for much higher bids than fresh produce and beverages. These differences cannot only
be explained by differences in supply: Both cereal and ready meals are in abundance, and sell for
relatively high prices. Meanwhile, Health/Beauty and Baked goods are rare, and sell for relatively
low prices. This suggests both demand and supply factors at work in determining the prices.
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Figure 3: Locations of lots and (approximate) locations of food banks

Note: Black spots give the approximate locations of food banks, jittered by an average of 200 miles.

Excludes loads originating in Canada (2% of loads).

3.1.2 Differences Across Food Banks

Food banks differ vastly in terms of their total consumption: Five food banks receive

the same amount of food as 122 food banks who receive the least food from Feeding

America. However, these food banks are also choosing very different types of food.

These 122 food banks, in total, spend 4 times as much as the five high consumption

food banks. Therefore these five food banks are choosing to receive much cheaper

food. This is likely because they rely on Feeding America for their staples, having

fewer local donors than the other 122 food banks.

Figure 5 plots average bids and 95% confidence intervals across food banks and

across different types of food. I focus on different types of food according to how

they are stored. I use a Tobit specification to account for censoring caused by food

banks only bidding on a small proportion of lots. Food banks are sorted according to

their average bid for Dried food. That is, as one moves from left to right, the average

‘Dried’ bids increase monotonically. Several observations are clear. First, that there

is evidence of systematic heterogeneity in average bids across food banks. Second,

that there is evidence of systematic heterogeneity in average bids within food banks,

across types of food. Third, that these two types of heterogeneity are not perfectly

correlated: for some food banks average bids on Fresh food are higher than average

14



Figure 4: Heterogeneity in Lots

Note: Plots mean winning bids, and 95% confidence intervals, across subcategories, controlling for

censoring and lot composition. Coefficients are ordered and coloured according to category.

bids on Dried food, but for other food banks this relationship is reversed. This

demonstrates that bidding behaviour differs systematically across food banks.

3.1.3 Differences Over Time

To investigate the variation in bidding behaviour over time I run the same Tobit

specification as above, considering how average bids vary from month to month. I

focus on only those food banks who win at least 100 lots over my sample period, so

that each food bank × type × month cell averages around 80 observations. I then

consider the degree of variation in my estimated parameters. A likelihood ratio test

that parameters are constant over time is rejected at 5% significance level for 96% of

food banks. This is indicative of systematic heterogeneity in food banks’ needs over

time. Additional results are reported in Appendix B.

3.2 Stylised Facts

I now investigate several stylised facts which point towards key determinants of bid-

ding behaviour, motivating my model’s key features. I have emphasised the role of

heterogeneity, and established the existence of several types of heterogeneity that
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Figure 5: Heterogeneity Across Food Banks

Note: The figure plots coefficients and 95% confidence intervals from a regression of Food bank ×
food storage type on bids, controlling for distance and censoring (non-bidding). Coefficients are

ordered by the ‘Dried’ coefficients. Only includes results for food banks who placed at least 50 bids

on a food type. Each food bank × type cell averages 3, 450 observations.

will become features of my model. In addition, I point to the importance of negative

bidding, as well as both dynamic and static complementarities across lots.

3.2.1 Negative Bidding

Negative bidding is common: 27% of bids are negative. Furthermore, with a negative

reservation price non-entry only happens when food banks have negative marginal

valuations, when food banks must be paid to accept certain loads. This occurs in

98% of bidder × lot combinations. Negative valuations likely occur because of limited

storage capacity, as emphasised in Prendergast (2017). They cannot throw away

excess (non-expired) food as this sends a bad signal to donors. Therefore, I require

a model that incorporates these storage costs and negative marginal valuations.

3.2.2 Dynamic Complementarities

Figure 6 panel (A) demonstrates that, conditional on winning food of a particular

type at time 0, the probability of bidding on lots of the same type falls by around 25%
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(1.5 pp) on subsequent days.16 As food banks win more of a particular type of food,

the less they are willing to pay for an additional lot from that type. Given that food

banks are almost certainly forward looking, this finding highlights the need to model

dynamics. Food banks treat these large loads of food like durable goods, working

through their current stocks before returning to bidding on the Choice System.17

Figure 6: Evidence of Dynamic Complementarities

(A) (B)

3.2.3 Static Complementarities

Figure 7 panel (A) demonstrates that, for a particular type of food, as the number of

lots auctioned on a given day increases, food banks bid on a smaller proportion of lots.

If pay-offs were additively separable we would see a horizontal line. This suggests that

lots exhibit a negative complementarity (substitutes) within a storage type - they do

not want to win more food than they can afford to store. I cannot treat auction

16This observation could be the result of transportation costs or budget constraints: Winning a
lot at time 0 exhausted their budget, so the food bank must wait until they regain enough shares
to begin bidding again. However this argument is inconsistent with the result from panel (B), that
winning one type of food doesn’t (meaningfully) impact the probability of bidding on a different
type of food. The same argument holds for Figure 7 panel (B), given that the effect seen in Figure
7 panel (A) could also be caused by binding budget constraints.

17This alone does not necessarily require a dynamic model of forward looking agents. A dynamic
model is only strictly required if the counterfactuals of interest sufficiently change the strategic
environment, sufficiently altering the agents’ continuation values. The counterfactual mechanisms
I consider in section 7 are strategically very different from the Choice System, as food banks are
generally less able to access the food they need than under the Choice System.
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pay-offs as additively separable, and must instead take a multi-object approach, ac-

counting for the simultaneous auction environment. Panel (B) demonstrates that we

see a much weaker relationship as the total number of lots increases. This highlights

the importance of treating different types of food as imperfect substitutes.

Figure 7: Evidence of Static Complementarities

(A) (B)

4 The Model

I now present the empirical model of food banks bidding in the Choice System.

Section 4.1 introduces the market environment and the model primitives. Section 4.2

introduces the food banks’ dynamic optimisation problem. Section 4.3 discusses the

Markov Perfect Equilibrium and stationarity in this dynamic context. Finally, section

4.4 discusses Identification. Assumptions necessary for identification and feasibility

of estimation are introduced as and when they are needed.

4.1 Market and Primitives

Each period t, over an infinite horizon, N food banks compete in up to L First-Price

Sealed-Bid auctions. Food banks are denoted by i and lots are denoted by l. a is

used to denote the combination outcome from a round of auctions. That is, which

combination of lots food bank i won.
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4.1.1 Auction Environment

Actions

Players simultaneously choose which lots to enter and what to bid. Entry decisions

consist of an L dimensional vector dit. Entry ditl = 1 if they enter lot l, ditl = 0

otherwise. Each player plays an L dimensional vector of bids each period, denoted

bit, with bitl = ∅ if ditl = 0. Bids must weakly exceed the reservation price, so that

bitl ≥ Rtl if ditl = 1. Auctions are costless to enter.

Outcomes

Winners are announced simultaneously. Winners pay their bids, and every player

observes the identities and bids of winners. Define player i’s individual outcome

vector wit as the L × 1 vector such that wilt = 1 if food bank i won lot l at time t,

and zero otherwise. Ex-ante hypothetical outcomes are denoted by wa
it.

Lots and lot characteristics

Each period up to L lots come to auction. Each available lot l is characterised by

a row-vector of characteristics ctl, consisting of the the location, size, categories (c),

subcategories (h), and storage method (g) of the lot. The number of pounds in each

lot from each category/subcategory/storage method is denoted by
{
zctl, z

h
tl, z

g
tl

}
, so

that if a food bank wins lot l their stock of food from each category increases by zctl.

For notational convenience I absorb these variables into the common state variable

s0t. I make the following assumption about the common state variables:

Assumption 1. s0t follows an exogenous Markov process, drawn from F 0(.|s0t−1)

This assumption ensures that supply and lot characteristics are exogenous. This

requires that supply does not react to prices in the Choice System.

4.1.2 Primitives

States

Food bank i begins the period in state sit ∈ S. This represent the food bank’s current

stock of food. I primarily focus on their stocks from each storage method, so that

19



the individual state has 5 dimensions.18 This captures the dynamic costs of storing

durable goods. If the outcome from period t is wa
t they end the period in state

sait. sit = sait if and only if the player does not win a single lot. Writing wT
itz

g
t as i’s

winnings from period t I make the following assumptions about how stocks transition:

Assumption 2. (i) sit transitions according to the following process:

sit = sit−1 + xit + wT
it−1z

g
t−1

(ii) xit ∼ F x
i = N(µi,Σi) is an exogenous innovation.

I do not assume that individual states are observed. I assume that stocks are

continuous.19 Day-to-day variation in stocks is likely a major source of variation in

bidding behaviour. Food banks supplement their stocks of one type of food they

have not recently received from local donors with food from Feeding America. The

random variable xit is observed each morning before items are posted on the Choice

System. It can be interpreted as the net daily change in food banks stocks - the

food received from local donors, less the food given out to clients. Part (ii) of this

assumption imposes that these changes are exogenous. Food banks don’t turn down

(or request additional) donations from their local donors.20 Meanwhile, normality

is reasonable for these large food distributors receiving many donations from many

different sources, and sending out food to many different food pantries.21

18I also focus on their stock of each subcategory h in order to capture food banks’ preferences
over how the food is used. However, I will assume that pay-offs are affine in subcategory stock (not
subject to diminishing returns - food banks always have people to feed), meaning that the level of
the stock of each subcategory is neither identified nor welfare relevant (up to normalisation).

19Difficulties in estimating dynamic models with continuous state variables is well known. How-
ever, continuous states are common in models of dynamic auctions. A previous version of this model
discretised stocks. However the state had to be very finely discretised to capture all the possible
combinatorial outcomes from a day’s auctions.

20This simplification is likely to bias my results in favour of the Old System over the Choice
System. If net donations were endogenous this would allow food banks to use their winnings to
influence future net donations. Choice would be even more valuable. For example, if local donations
were negatively correlated with previous winnings food banks could focus on only winning food from
the Choice System they know they cannot get from local donors.

21This transition process incorporates two additional assumptions. First, food received from
Feeding America, and food from local donors, are perfect substitutes. This is a necessary normal-
isation. Second, stocks do not degrade over time. This assumption was motivated by discussions
with food bank volunteers. Most of the donated food, even fresh produce, have long shelf lives, so
that any daily decay parameter is close to 1.
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Pay-offs

Following Altmann (2022) and Gentry et al. (2020) I decompose the flow pay-off into

a stochastic lot-specific component and a deterministic function of stocks:

Assumption 3. (i) The flow pay-off from outcome a can be written as

waT
it υit + j(sait)

(ii) The lot-specific pay-off υit is a random variable with υilt ∼ F υ
i = N(αTi ctl, σ

2
l ),

known privately, observed before entry, and drawn independently across i and t.

(iii) The deterministic function j : Si → R is finite, with j(0) normalised to 0.

(iv) Pay-offs are quasi-linear in shares (virtual currency).

The flow payoff function j captures both the costs of storing food, and the utility

from holding various types of food to be able to distribute them to clients. Part (ii)

embeds two assumptions. Assuming the privately known υit is conditionally inde-

pendent across individuals imposes independent private values. Assuming conditional

independence across time is a standard assumption in most dynamic models.22 The

assumption that j has finite range is predominantly for mathematical convenience,

while the normalisation is required as only marginal pay-offs are identified. While I

assume that pay-offs are quasi-linear in shares, as is standard in auction studies, I

allow food banks to differ in their marginal value of wealth, given by λi > 0.23

I also assume players have temporally additively separable preferences, and make

forward looking decisions with annual discount parameter β = 0.99, so that food

banks are extremely patient. I assume F , j, s, and β are common knowledge.

4.2 The Agent’s Problem

A (pure) strategy consists of a mapping from a player’s type and the state of the

world onto entry decisions and bids (dit,bit). Ex-ante a player’s strategy, Λi, admits

22Note that the fact I don’t observe the state variables is a violation of the conditional indepen-
dence assumption. Assumption 2 is the weaker assumption required instead.

23Altmann (2022) shows that the quasi-linear model is observationally equivalent to a model with
an inter-temporal budget constraint and constant marginal value of wealth. Constant marginal value
of wealth is a reasonable assumption when food banks are sufficiently patient. This requires that
day-to-day fluctuations in their budgets or stocks do not significantly impact expectations about
how valuable accessing food from Feeding America will be in future.

21



a distribution of bids according to Fi, ji and s.

4.2.1 Beliefs

Denote Γil(b,d; Λ−i) player i’s belief about the marginal probability that they wins

lot l, given their bid and entry decision, taking as given the strategies of other play-

ers. Denote Pia(b,d; Λ−i) player i’s belief about the joint probability, conditional

on (b,d,Λ−i), that the outcome from the round of auctions is wa
t . These objects

constitute food banks’ beliefs about other players’ equilibrium behaviour. In section

4.3 I make assumptions about these beliefs to make estimation feasible.24

4.2.2 Value Function

Assuming risk neutrality the bellman equation is given by:

W (υ, s; j,Λ−i) = max
b,d
{Π(b,d;υ, s, j,Λ−i)}

Where Π(b,d;υ, s, j,Λ−i) =

∑
l

Γl(bl, dl; Λ−i)(υl − λibl)︸ ︷︷ ︸
lot specific

+
∑
a

Pa(b,d; Λ−i)[j(s
a
i ) + β

continuation value︷ ︸︸ ︷∫
s̃

∫
υ̃

W (υ̃, s̃; j,Λ−i)dF
υ
i (υ̃|s̃)dF s(s̃|sa)]︸ ︷︷ ︸

combination specific

Continuation Value

The continuation value gives the expected pay-off from the start of the following

period having ended the current period in state sa. This can be written as follows:

V (sa; Λ−i) =

∫
s̃

∫
υ̃

W (υ̃, s̃; j,Λ−i)dF
υ
i (υ̃|s̃)dF s(s̃|sa)

A further important object is the sum of the deterministic flow pay-off function and

the discounted continuation value, denoted by k(sa; Λ−i) = j(sai ) + βV (sa; Λ−i) and

referred to as the ‘Pseudo-Static’ pay-off function. This is essentially the object one

would estimate if one were to incorrectly assume bidders are myopic. Estimating

this equilibrium object is key to estimating primitives in a dynamic multi-object

24Assumption 4, discussed shortly, ensures I only need to evaluate the 2L probabilities of combi-
natorial outcomes for player i, not all NL probabilities detailing which player won which lot.
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model. The importance of this object arises because the value function (and hence

the continuation value) can be written as functions of this pseudo-static pay-off:

W (υ, s; j,Λ−i) = max
b,d

{∑
l

Γl(bl, dl; Λ−i)(υl − λibl) +
∑
a

Pa(b,d; Λ−i)k(sa; Λ−i)

}
(1)

4.3 Equilibrium

I focus on symmetric Markov Perfect Equilibria (MPE), defined as follows:

Definition 4.1. : An MPE consists of a set of strategies Λ∗ and beliefs Γ(Λ∗), such

that for any (υ, j, s):

Optimality: (bΛ∗

i ,dΛ∗

i ) = arg max
{

Π(b,d;υ, s, j,Λ∗−i)
}

Consistency: Γil(bil, dil; Λ∗−i) = I[dil = 1]P (bil > max
i′ 6=i
{bi′l} |Λ∗−i)

The optimality condition requires that agents maximise the net present value of

pay-offs. The consistency condition requires that bidders’ beliefs are consistent with

the observed distribution of winning bids.25 Symmetry requires that bidders with the

same ‘type’, and the same beliefs, place the same bids. This allows us to write the

equilibrium strategies as a function of the state: Λ∗ = Λ(s).

Altmann (2022) proved that, conditional on existence of a symmetric Pure Strat-

egy Nash Equilibrium in the bidding game conditional on entry, such an equilibrium

exists.26 I make the following assumptions about equilibrium:

Assumption 4. (i) The data are generated by strategy profile Λ∗, a symmetric MPE

of the dynamic auction game, with the same MPE played each period.

(ii) ∀ i, l, and bil > Rl, Γil(bil, 1|s) is strictly increasing and differentiable in bil.

25This also requires bidders’ beliefs about P are consistent with observed joint probabilities.
26Altmann (2022) also requires equilibrium pay-offs are continuous in j + βV . A full existence

proof remains elusive. However this is not a practical problem. Numerous other papers studying
sufficiently complex auction games are unable to guarantee neither existence nor uniqueness of
equilibrium. This list includes, for example, Gentry et al. (2020) on simultaneous first-price auctions,
Fox and Bajari (2013) on simultaneous ascending auctions, and Jofre-Bonet and Pesendorfer (2003)
on dynamic single-object first-price auctions. The empirical strategy outlined in section 5 does not
require existence of a MPE. Instead, it only requires that food banks have beliefs that are consistent
with observed play.

23



(iii) ∀ i and si the Hessian of the pseudo-static pay-off function k has full rank

(iv) ∀ i and joint outcome a Pia(b,d|s) =
∏

l Γil(bil, dil|s)w
a
il(1− Γil(bil, dil|s))1−wa

il

(v) ∀ i, l, bil and dil Γil(bil, dil|s) = Γl(bil, dil|ϑ({si}N), s0)

Part (i) is reasonably standard in studies of dynamic games, ensuring that the

observed data is stationary. However, it embeds the stronger assumption that food

banks’ states are stationary. We expect µi < 0; without access to Feeding America

stocks will drift downwards over time. However food banks use the Choice System

to supplement their stocks. When stocks get low, the food bank begins bidding to

keep stocks up. This requires that, in equilibrium, food banks have enough control

over their winnings to make this possible.27

Part (ii) of this assumption is required to ensure that standard first order con-

ditions are necessary for optimality, so that primitives are point identified. I allow

for the possibility of ties at the reservation price, which imply non-differentiability

of Γ at R. Likewise, part (iii) is necessary for identification, as conditional on the

function k it allows the first order conditions to be inverted for si.

Part (iv) requires that, in equilibrium, food banks believe winning one lot is condi-

tionally independent of winning any other lot. This essentially assumes that winning

bids are conditionally independent across auctions, simplifying estimation consider-

ably. In Appendex J.1 I test and present support for this simplification.

Part (v) is necessary for estimation to be feasible. Without additional assumptions

the continuation value for food bank i depends on the state of every food bank,

creating an infeasibly large state-space. However, s−i only enters the continuation

value of player i through Γil(.|st+1). As the number of bidders grows the probability

of any individual and their state influencing prices falls to zero. This assumption

ensures that equilibrium win probabilities Γi do not depend on the states of every

player. Instead, they only depend on aggregate statistics of s, using the aggregator

ϑ with known functional form.28 For notational convenience I absorb ϑ(s) into the

27Appendix C discusses the stationarity assumption in additional detail, demonstrating how we
can test for stationarity. This assumption essentially requires that equilibrium winnings and net
local donations are co-integrated, so that the equilibrium stock process is stationary. I demonstrate
how we can test co-integration through equilibrium winnings without needing to observe stocks.
Broadly, I find evidence of stationarity. Stationarity also requires that the distribution of net local
donations is constant over my 3 year period. Feeding America’s ‘Hunger in America’ resource shows
that food bank usage and food insecurity remains stable over this period.

28This assumption presents a departure from both Jofre-Bonet and Pesendorfer (2003) and Gen-
try et al. (2020). It is similar to the large market Oblivious Equilibrium (Weintraub et al., 2008)
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common state variable s0. This assumption also implies that we can write the value

function, continuation value, and k, as functions of si and s0.

4.4 Identification

I now briefly discuss the identification of this model. A fully non-parametric proof

goes beyond the scope of this paper. Altmann (2022) proves non-parametric identifi-

cation of the model when all state variables are observed, also when individual states

are not observed but the lot-specific value υ is non-stochastic. In Appendix F I prove

semi-parametric identification of the model, under the functional form assumption

on k made in section 5.

Beliefs are identified trivially from the observed distribution of winning bids, con-

ditional on lot characteristics. Parameters of the lot-specific pay-off distribution F υ

are identified from variation in lot characteristics, and how they are associated with

differential bidding and entry decisions. The marginal utility of wealth parameters

λi are identified by variation in the scale of bids across food banks, behaving in a

similar manner to food bank specific lot-specific variances.

Permanent heterogeneity across food banks is identified from variation in bids

and entry decisions across food banks. For example, we expect that food banks with

fewer local donors or more clients (lower µi) to bid more frequently, while food banks

with more variable local donations (larger Σi) to bid more irregularly.29 However

this is not sufficient to identify the flow pay-off function j. Therefore, the model

is additionally identified using two sources of variation in the data: First, variation

in the set of lots being auctioned each day. Second, variation in observed winnings.

Essentially, I make use of the same variation plotted in figures 7 and 6.

If the function j is very concave in si, winning many lots simultaneously may be less

desirable than smoothing out consumption over time. Therefore, when more lots are

available in a given period, they will bid on a smaller proportion than if j was not so

and Moment-based Equilibrium (Ifrach and Weintraub, 2017), albeit in a game of incomplete infor-
mation. Backus and Lewis (2016) employ a similar assumption in their dynamic auction framework.
They argue that because there are many competitors it is unlikely that bidders follow the identities
of which other bidders are likely to bid at any given time, and their states. It is unlikely that
any given food bank keeps track of competitors’ states. This assumption is tested on the empirical
equilibrium winning probabilities in Appendix J.1.

29Σi is separately identified from variance parameters of F υ, through time-series variation and
auto-correlation, since stock shocks persist, while lot-specific shocks do not.
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concave. This rests on Assumption 1 to ensure that the composition of lots available

is conditionally exogenous. Likewise, if bidding generally stops altogether after a win,

this suggests the food bank has very low capacity and j is again strongly concave.

These two effects also allow us to tease out complementarities across different types

of lots. For example, we can observe how bidding behaviour on milk is affected by

cereal availability, or a recent cereal win.

The distribution of net donations is identified from the effect of winnings on bid-

ding behaviour and how long these effects persist. If a food bank always returns to

bidding quickly after a win this suggests they give out much of this type of food to

clients, or receive little of this food from donors. Likewise, the degree of variation

in this recovery time yields information about the variance Σi. Importantly, these

parameters are only identified conditional on the pseudo-static pay-off function k,

since the state variable only influences bidding behaviour through k.30

5 Empirical Stategy

This section describes the estimation procedure used to estimate the model. Section

5.1 outlines the three step procedure, noting the relationship to the procedure of Jofre-

Bonet and Pesendorfer (2003). Section 5.2 discusses parametrisation and estimation

of beliefs, which are estimated using a likelihood procedure. Section 5.3 discusses

the second estimation step, in which I simultaneously estimate the state transition

process, the distribution of lot-specific values, and the pseudo-static pay-off function.

In section 5.4 I detail how I disentangle the combinatorial flow pay-off j and the

discounted continuation value from the pseudo-static pay-off. Full details of the

estimation procedure are given in Appendix H.

5.1 The 3-Step Procedure

The standard approach to estimating dynamic auction games, from Jofre-Bonet and

Pesendorfer (2003), relies on the ability to write the continuation value as a function

30This argument is similar to the identification argument of Berry and Compiani (2020). Iden-
tification of this model does not require randomisation nor strict exogeneity. Instead, conditional
weak exogeneity is sufficient. The bidder’s winnings in periods t′ < t, as well as the set of available
lots at time t, will affect their bidding behaviour at time t. I assume, plausibly, that there is no
contemporaneous reverse causation; their bidding behaviour at time t does not impact the set of
lots available at t, nor previous winnings.
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of the distribution of bids only. This is not possible in the multi-object context be-

cause of an order problem: Bids are L dimensional, while values, and continuation

values are 2L dimensional. Full solution methods of Rust (1987) are computation-

ally intractable in this setting - recursively evaluating the value function requires

numerically maximising bids for each s,υi.

Instead, Altmann (2022) demonstrates that we can write the continuation value

as a function of the distribution of bids and pseudo-static pay-offs. If we know the

pseudo-static pay-offs we can find the continuation value, which then allows us to

back out the flow pay-off j from the definition of pseudo-static pay-offs: k = j + βV .

To estimate the pseudo-static pay-off function we estimate the model as if we were

estimating a static model, but allow pay-offs to depend on s0.

This procedure bears a strong relationship with the standard method of Jofre-

Bonet and Pesendorfer (2003), and even Conditional Choice Probability (CCP) meth-

ods of Hotz and Miller (1993). Both methods involve first estimating non-primitive

objects (CCPs and bid distributions), using these objects to back out the continua-

tion value. Furthermore, this approach is numerically equivalent to a CCP approach

in a dynamic discrete choice context.

5.2 Step 1. Beliefs

Assumption 4 ensures food banks form beliefs consistent with observed play. There-

fore, we can estimate beliefs using the observed distribution of winning bids. Esti-

mating beliefs in this way avoids the need to solve the model for equilibrium. This

procedure is common in the empirical auction literature due to the extensive compu-

tational cost of finding equilibrium beliefs (Athey and Haile, 2007).

I make parametric assumptions about Γ to facilitate estimation. I assume winning

bids follow a generalised extreme value distribution, censored at the reservation price:

Γil(.|s) = GEV (.; ξc, ζc, c
T
ltµ+ dlt) where dlt = sT0tϑ (2)

Where the shape and scale parameters ξ and ζ are category specific. clt gives a

vector of lot specific location shifters, such as the subcategory composition.

dlt describes how the distribution varies with the state of the world, forming an

index to be estimated. The index is a linear function of the quantity of food, by

usage type, auctioned at t and also the quantity over the previous 30 days, up to
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t − 1. This is designed to capture competitive pressures on prices. If very little

food has been auctioned over the previous month, one would expect a higher price.

Estimating this demand index in the first stage allows us to use the estimated index

in later estimation objects. In particular, when considering the transition process of

common state variables, I can focus on just the transition process of dlt.

The Fisher–Tippett–Gnedenko theorem establishes that the Generalised Extreme

Value distribution is the limiting distribution of the maximum of independently dis-

tributed random variables. In an Independent Private Value framework, the winning

bid is just the maximum of (conditionally) independent random variables. Therefore

the GEV assumption is easily justified. Meanwhile the parametrisation is chosen to

be suitably flexible, given the available data. Full details of how I estimate beliefs

are included in Appendix H.1.31

5.3 Step 2. The Pseudo-Static Model

I now describe the second part of the estimation procedure, in which I jointly estimate

F x, F υ, k for each food bank. I begin by discussing the problems that must be

overcome in this estimation step, before detailing the parametric assumptions made

to enable estimation of each of the three sets of objects. The key functional form

restriction is assuming that the pseudo-static pay-offs are quadratic in stocks, similar

to the standard assumption of quadratic storage costs. Estimating the second-stage

then requires estimating a censored Linear Gaussian State Space model.

The central estimation difficulty concerns the unobserved state and the unobserved

bids. Bids are unobserved when a food bank chooses not to enter a particular auc-

tion, which occurs frequently. Ignoring these bids introduces the standard problems

of censoring in econometrics. I estimate the model using a Gibbs Sampling procedure.

I use data augmentation to iteratively sample both unobserved bids and unobserved

states from their conditional posterior distributions, before updating my parame-

ter estimates given the augmented data. Full details of the estimation procedure,

31This details additional covariates included in estimation. Also, how I estimate the probability
of tieing at the reservation price. If no food bank bid on a lot, then a food bank would have won
if they bid the reservation price. But, if some other food bank won at the reservation price, then
the food bank would have tied had they bid the reservation price. Importantly, allowing for ties
rationalises food banks choosing to bid just above the reservation price.
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including assumptions on prior distributions, are given in Appendix H.2.3233

5.3.1 Individual States

I estimate individual × storage type specific mean and variance parameters (µig,Σig)

for the normally distributed net local donations xit. I make use of the prior informa-

tion from Assumption 4, which requires the stock transition process is stationary. In

Appendix C.4 I prove that stationarity requires:

µi = −E[wT
itz

g
t ] Σi < 2V ar[wT

itz
g
t ]

On average winnings must offset mean net donations and the variation in win-

nings reflects the variation in net donations. However I do not impose that either

relationship holds exactly, and instead use them to build informative priors.34 I have

a standard initial state problem. The quadratic assumption I impose on k ensures

the level of the state is not identified, so I normalise the initial state to zero.

5.3.2 Lot-Specific Pay-offs

I specify the mean of the lot specific pay-off υilt as αidistanceilt, so that the mean

lot specific pay-off depends linearly on the distance between food bank i and lot l.

The variance σ2
l is category combination specific. Assumption 3 imposes that the lot

specific pay-offs are uncorrelated across t and i. To simplify estimation I also assume

these variables are conditionally uncorrelated across lots l.

32Because heterogeneity is an important theme of the model I generally estimate separate pa-
rameters for each food bank. However, I do not always have enough identifying variation for each
individual food bank. I use a Bayesian Hierarchical framework to flexibly introduce information
pooling across bidders in my model. This approach is flexible enough to allow pooling for food
banks that lack identifying variation, placing more weight on the hierarchical parameters, and allow
separation for food banks that have a lot of identifying variation, placing more weight on the data.

33Due to computational requirements I focus my estimation on the 34 food banks that each
won at least 150 lots (Type 1 food banks). These food banks consume 70% of the food from the
Choice System. It is standard in empirical auction studies to estimate a main model and a model
of ‘fringe’ bidders (For example Jofre-Bonet and Pesendorfer (2003) and Gentry et al. (2020)). I
estimate a simpler (myopic) model for the remaining 88 food banks who won at least 30 lots and
whose locations are known (Type 2 food banks). Details of this model and estimation is included
in Appendix H.4. All counterfactual analysis uses the models from both sets of food banks.

34This is because the relationships only holds, averaged over time. Winnings wT
itzt are both

extremely ‘lumpy’ as well as auto-correlated, so that convergence to the true mean is slow.
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5.3.3 Combinatorial Pay-offs

I fit a parametric form to the function k(si, s0). Within feasibility constraints, I choose

a parametric function to reflect how food banks gain benefits from food according

to how the food is used (according to it’s subcategory) and how they face costs of

storing the food (according to the storage method). I assume the following:

k(si) = Φshi + sgTi Ψis
g
i (3)

Where Φ is an 1 × 164 row vector, and Ψi is a 5 × 5 dimensional matrix. The form

of k as I have presented it above depends on both the stock of each storage type sgi

and the stock of each subcategory shi . However, consider the marginal pseudo-static

pay-off from winning lot l with characteristics cl:

k(si + zl)− k(si) = Φzhl + zgTl Ψi(z
g
l + 2sgi )

This does not depend on shi , because the hessian of the pseudo-static pay-off, with

respect to shi , has rank 0. This means that shi ‘falls out’ of the model, so that I can

focus on sgi as the state variable.

In theory k should depend on s0, capturing how the continuation value depends on

food banks’ beliefs about future supply. If they believe many lots will be auctioned

next period, prices are likely to be low in future, lowering the opportunity cost from

not winning today. In practice I assume k is independent of s0 for two reasons.

First, the supply of shares varies with supply to ensure prices remain approximately

constant over time. Therefore we expect little variation in average prices over time.

However, relative prices may vary with supply and this may impact the continuation

value. As I show in Results section 6.1, the relationship between supply of different

types of food and prices is not economically significant. Nonetheless, in Appendix

J.2.1 I present results from an econometric specification that includes dltg (the demand

index for food type g) as an input to k.

For computational tractability I impose that Φ is constant across i. Allowing it to

vary introduces an unwieldy number of parameters to the model. This is a reasonable

assumption as food banks likely gain the same benefit from different subcategories.
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Three Equations

The model presented above leads to necessary optimality conditions for bidding which

can be inverted for the Inverse Bid System, ξilt(b,d|si, s0). Derivation of this system

is given in Appendix D. This gives us the following three equation model, consisting

of a ‘Transition Equation’, an ‘Observation Equation’, and a ‘Censoring Equation’:

sgit = sgit−1 + xit + wT
it−1z

g
t−1 → Transition Eq.

λiyilt = Φzhtl + zgTtl Ψi(z
g
tl + 2sgit + 2

∑
m 6=l Γm(bitm)zgtm) + υilt → Observation Eq.

y∗itl =


bitl + Γl(bitl)

∇bΓl(bitl)
if bitl > R

R + Γl(R+1)
Γl(R+1)−Γl(R)

if ditl = 1, bitl = R

R if ditl = 0

→ Censoring Eq.

(4)

The observation and censoring equations come from the inverse bid system, while the

transition equation was defined in Section 4. Importantly, the Observation Equation

is affine in the unobserved state sgit. Therefore the model is a case of a Censored

Linear Gaussian State-Space model.35

5.3.4 Estimation procedure

Unlike the non-censored case, the likelihood of the Censored Linear Gaussian State

Space model is intractable. Instead, estimation is performed using a Gibbs Sampler,

which consists of the following steps:36

1. Draw beliefs Γ from their posterior distribution using Metropolis Hastings

35This Observation Equation is endogenous - it contains a dependent variable on the right hand
side, through bitm. In general, bitm may be correlated with υitl - when υitl is large, food bank i may
prefer to win lot l instead of lot m (assuming negative complementarities), so lower their bid on lot
m. In practice, however, simulations suggest the inconsistency caused by this endogeneity is very
small, as Γim(bitm) is generally very unresponsive to υitl, depending much more on υitm, zitm and
even zitl. In Appendix J.2.2 I use the instrumental variable procedure of Altmann (2022), using
zgtl + 2sgit as an instrument for zgtl + 2sgit + 2

∑
m 6=l Γim(bitm)zgtm.

36Recognise how this procedure builds on the identification argument presented in 4.4. In step 3.
I use variation in winnings and the effect on bidding behaviour to infer changes in stocks, pinning
down the distribution of net donations. In step 4. I use variation in zt as well as winnings (through
the sampled states), and how these impact bidding, to pin down k.
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2. Given Γ, the parameters of the pseudo-static model {ki, F υ
i , F

x
i }N , and states

{sgit}T,N , draw censored values of {yilt}NTL using the Censoring Equation

3. Given Γ, {ki, F υ
i , F

x
i }N , and {yilt}NTL, use the Carter-Kohn Algorithm to draw

{sgit}T,N using the Transition and Observation equations.

4. Given Γ, {yilt}NTL and {sgit}T,N , draw {ki, F υ
i , F

x
i }N from their posterior dis-

tributions using the Observation Equation.

5. Repeat

Additional details of the estimation procedure are given in Appendix H.2.

5.4 Step 3. The ‘Dynamic’ Game

At this point we have draws of beliefs, {ki, F υ
i , F

x
i }N , and {sgit}T,N from the posterior

distribution. I now describe how I evaluate the continuation value V (sgi , s0). I make

use of the following proposition:

Proposition 1. The ex-ante Value Function can be expressed as:

E[W (υit, si, s0)|si, s0] =
E[qt(s

g
i )π(bit,dit|sgi , s0)|s0]

E[qt(s
g
i )|s0]

Where qt(s
g
i ) gives the posterior probability that sgit = sgi and

π(b,d|sgi , s0) =
∑
l

λi
Γl(bl, dl; s0)2

∇bΓl(bl, dl; s0)
−
∑
m6=l

Γl(bl, dl; s0)zgTl Ψiz
g
mΓm(bm, dm; s0) + sgTi Ψis

g
i

This proposition is proven in Appendix G. The identity π(b,d|sgi , s0) arises from

substituting the first order conditions back into the maximand, writing the ex-ante

value function as a function of bids and the pseudo-static pay-off function. The

main proof then extends the key result from Arcidiacono and Miller (2011) to the

continuous choice case. The sample counter-part to this object is then easily found.

Full details of this procedure are given in Appendix H.3. I evaluate the ex-ante value

function across a grid of states. I use a 205 grid evaluated evenly across points from

the posterior sampled states.37

37Such a large grid is feasible in this context as I only need to perform the procedure once.
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Having evaluated the ex-ante value function for a parameter draw, I evaluate

the continuation value using V (si, s0) =
∫ ∫

E[W (υ, s̃i, s̃0)|s̃i, s̃0]dF (s̃0|s0)dF (s̃i|si).
Finally I back out j(si) = k(si, s0)− βV (si, s0)

6 Estimation Results

This section presents the results from the three stages of estimation described in

section 5. Only a subset of key results are reported in the text, focusing on the

theme of heterogeneity and only presenting results for the 34 largest (‘Type 1’) food

banks, who consume 70% of the food on the Choice System. Full results are reported

in Appendix I, including Gelman-Rubin convergence statistics. When discussing

statistical significance I focus on 95% credible intervals. I present several graphs

plotting the individual parameters, and credible intervals, across food banks.38

6.1 First Stage Results

The key parameters estimated in the first stage are the shape, scale, and location

parameters that describe the generalised extreme value distribution. The Shape pa-

rameters lie significantly within the interval (−0.1, 0.5), with none of the parameters

significantly below zero. The scale parameters are all estimated to be between 2000

and 5000. The implied variance is much higher than the variance of winning bids.

This variation is needed to rationalise the relatively high likelihood (around 0.3 on

average) of winning at the reservation price.

The estimated subcategory fixed effects are precisely estimated, widely dispersed,

and strongly correlated with the average winning bids across subcategories presented

in Figure 4 (R2 = 0.74). The standard deviation of posterior means across subcat-

However, storing 34, 000 grids, one for each food bank × parameter draw, is not. I use a quadratic
approximation of the ex-ante value function. In Appendix J.3.1 I evaluate the fit of this approxi-
mation by considering the R2 of the approximation regression. 100% of these R2s lie between 0.99
and 1. The fit is strong due to the quadratic term that appears in the ex-ante value function.

38Appendix I.6 discusses model fit, both in and out of sample. Broadly, the model fits the
data well, matching average patterns of consumption across food banks and food types, as well as
average propensities to place bids across food banks, categories of food, and months. The simulated
distribution of bids conditional on entry does not fit the data as well, failing to match the observed
long right tail of bids and over-estimating the mean and standard deviation of bids by a magnitude
of 50%. However this is not a major problem, since for my counterfactual exercises it is food banks’
allocations that matter, rather than their signal of preferences.
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egories is 2400, while the mean posterior standard deviation is 800. This suggests

much more variation across subcategories than uncertainty about subcategory pos-

terior means. The previous 30 days supply of food is estimated to have a significant

negative effect on prices for every type of good except Non-Food and Condiments.

The coefficient on Meals is the largest, estimating that each additional increase in

the previous 30 day supply by one thousand tons (approximately one hundred loads)

decreases the winning bid by 350 shares. This magnitude, while statistically signifi-

cant, is not economically significant (around 0.017 standard deviations), relative to

the variation seen across different types of food through the subcategory parameters.

The present day’s supply of food is not estimated to have a significant effect on prices,

however these estimates are noisy.

6.2 Second Stage Results

6.2.1 Unobserved State

Figure 8 plots the estimated µi and
√

Σi parameters for each of the Type 1 food

banks. 95% credible intervals are also plotted. Estimates are sorted according to the

estimates for the Dried food type.

There are two key takeaways from these results: First, the extent and significance

of the heterogeneity. The variation across food banks in the distribution of net

donations of for Fresh food is particularly stark. It is also clear that the variation is

not purely vertical: Some food banks have higher estimates for Dried than Tinned,

while other food banks exhibit the opposite relationship. The second key takeaway

concerns the differences in the scale between the two sets of graphs - the standard

deviations are generally larger than the means, so we expect the unobserved state

process to be noisy.39

6.2.2 Lot specific pay-off

The key lot specific parameters are the coefficient on distance between food bank i

and lot l, the constant marginal value of shares λi, and the standard deviation of the

39I also correlate my estimates with observable characteristics of food banks, such as population
density in their catchment area, and agricultural rents. This analysis is omitted as I do not find
any particularly striking results. Correlations are reasonable and in the expected directions. For
example, food banks in areas with higher population density or lower agricultural rents are estimated
to have lower average net donations of fresh produce.
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Figure 8: Estimated unobserved state parameters

(A) (B)

Note: The figure plots posterior means for the mean and standard deviations of net local donations,

as well as 95% credible intervals. Results are sorted according to the estimates for the Dried storage

type. The plot excludes Type 2 food banks, and the ‘non-food’ type, to improve graphability.

idiosyncratic lot specific shock υilt.

Distance coefficients vary across food banks from a cost of 5 to 98 shares per km,

with an average of 23. λi for the Type 1 food bank with median consumption is

normalised to 1. The posterior means then vary from 0.5 to 5. I observe a negative

relationship between the shadow price of shares and goal factor - food banks with

a higher goal factor receive more shares. However this relationship is very weak,

stressing the importance of unobserved food wealth. Standard deviation parameters

are estimated to be large, with a mean posterior mean of 32, 000. Such large standard

deviations are needed to rationalise the small probability of bidding (≈ 2%) with the

relatively large variation in bids conditional on bidding.40

6.2.3 Combination pay-off

The estimated Φ parameters, associated with the marginal value of winning a pound

of each subcategory, are strongly correlated with the first stage subcategory param-

40I decompose the residual variation into idiosyncratic variation in the lot specific value, and
unobserved variation in the state. Condition on observing the previous period’s state, 45% of this
short-run variation is due to variation in the unobserved state, and 55% due to lot specific variation.
When we consider long run variation, 72% of the unobserved variation is estimated to come from
variation in the unobserved state.
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eters (R2 = 0.82). Panel A of Figure 9 plots food banks’ willingness to pay for an

additional 40, 000 pounds from each storage type, evaluated when stocks are zero.41

I estimate significant variation across food banks, and within food banks across stor-

age types. The willingness to pays are generally (significantly) negative, as expected.

I find broadly low figures for Dried food, which is driven by food banks generally

bidding on fewer fresh items at a time, and bidding on fewer items after winning.

Figure 9: Estimates of Ψi and ji

(A) (B)

Note: Figures plot posterior mean equilibrium willingness to pay (A) and marginal flow pay-offs (B)

for a 40, 000 load for each storage type. Bars give the 95% credible intervals. Estimates are ordered

according to the estimates for Dried loads. The plot excludes Type 2 food banks and estimates for

non-food storage type. WTPs and marginal flow pay-offs are evaluated when stocks are zero.

6.3 Third Stage Results

Figure 9 panel (B) plots posterior means of the marginal flow-payoffs from receiving

40, 000 pounds, evaluated when stocks are zero. Estimates are plotted for Type 1

food banks, sorted according to the estimate for the Dried storage type.

I estimate significant differences across food banks, as well as across types of food.

This suggests different food banks have different capacities for storing different types

of food. Marginal flow pay-offs are generally negative, indicative of storage costs.

Positive marginal pay-offs suggest that food banks also benefit from not having an

41Due to the normalisation made in section 5, stocks on March 1st, 2014 were normalised to zero,
as the level of stocks is not identified.
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empty warehouse. The results are broadly similar to those plotted in figure 9 panel

(A) as one would expect. Because stocks are persistent, the continuation value from

storing food tomorrow should be similar to the cost of storing food today. However,

the absolute magnitudes in panel (B) are generally smaller than in panel (A). This

is because the pseudo-static pay-offs account, not just for present storage costs, but

also expected future storage costs and the future Opportunity Cost of storage.

To summarise, I estimate that food banks differ systematically in their net local

donations, storage costs, transportation costs and marginal value of shares. This

suggests that giving food banks choice over their allocations will be welfare improving.

7 Counterfactuals

Feeding America introduced the Choice System, replacing the Old System, in order to

give food banks choice over the food they received. Feeding America also put signifi-

cant resources into minimising the possible costs from the introduction of this system.

They were worried that it might lead to an inequitable distribution of food, allowing

smaller food banks to ‘fall through the cracks’. Motivated by the introduction of this

new system, this section investigates the welfare and distributional consequences of

introducing the Choice System. I then consider a number of additional mechanisms

used by other food bank networks around the world.

Section 7.1 briefly explains how I simulate equilibrium allocations under the Old

System. Section 7.2 presents the results from this counterfactual exercise, as well as

presenting descriptive analysis to understand what factors are driving these results.

Section 7.3 introduces several additional allocation mechanisms and presents results

from these additional counterfactual exercises. Additional details of how I simulate

the counterfactual mechanisms and the Choice System are given in Appendix K.

7.1 The Old System

I model the Old System in continuous time. This is realistic since food banks could

receive a call from Feeding America at any time. I also assume that food is given out

to clients and received from local donors at random times during the day. Continuity

of time ensures that the probability of a call from Feeding America, or local donors,

occur simultaneously with probability almost surely zero. I assume food banks do not

37



observe offers made to, nor decisions of, other food banks. They do not know their

place in the queue; only their own Goal Factor, and when they were last offered a load.

I assume they form beliefs about the rate they receive calls from Feeding America,

and also the probability of being offered a load with characteristics cl, conditional

on receiving a call. I assume these objects are independent of the time since their

previous offer. In practice, given the frequency and irregularity with which food

banks are offered food (on average, around 5 times per day with a standard deviation

of 8) this simplification is unlikely to cause significant inaccuracy.

I assume a Markov Perfect Equilibrium in symmetric strategies, as defined in

section 4. This requires that food banks make optimal accept/reject decisions given

their beliefs, and that beliefs are consistent with the observed realisation of offer

rates. Appendix K.1 details how equilibrium beliefs and equilibrium value functions

are formed. Given beliefs I find each food banks’ value function by numerically solving

the Hamilton-Jacobi-Bellman differential equation. I then simulate the mechanism

and update beliefs using observed offer rates, repeating until convergence.

7.2 Results

7.2.1 Welfare

My counterfactual simulations produce welfare measures in terms of consumer sur-

plus, measured in shares. This has the benefit that consumer surplus is a cardinal

measure, enabling inter-food bank comparisons. However the value of shares is diffi-

cult to interpret as they have no value outside the Choice System. Instead, similar to

Agarwal et al. (2021), I report welfare as the equivalent increase in the supply of food

that would have the same total value in shares.42 This measure is valid under com-

petitive equilibrium because the money supply adjusts to ensure prices are constant,

given changes to the supply of food. Therefore, if consumer surplus under the Old

System is double that under the Choice System, I liken this to double the nominal

expenditure, which equates to double the supply of food.

42This is similar to how consumer surplus is typically measured in dollars, except that here
I am measuring it in terms of how much food those dollars could purchase. I could also use
distance travelled as a numeraire, reporting the equivalent reduction in the total distance travelled.
Prendergast (2022) then measures welfare in dollar terms using estimates of trucking costs from the
literature. Given my results that different food banks face very different transportation costs, as
shown in Appendix I.2, this approach is unattractive.
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Importantly, the ‘level’ of welfare is not identified because the levels of both stocks

and flow payoffs j(si) are not identified. I use a random allocation as a benchmark

counterfactual. This is a relevant benchmark since it can be considered the baseline

worst case allocation mechanism. Results are reported on a scale of zero (food is

allocated no better than random) to 292 tons (the daily average amount allocated

under the Choice System).

I report both utilitarian welfare and a weighted sum using Goal Factors as priority

weights. I also report descriptive measures of welfare. For example, the total amount

of food allocated. This is an important measure given the political cost to Feeding

America from being seen to waste food, or the indirect harm from donors being less

likely to donate again in future.43 The distance food must travel is another key

metric. We expect food banks to sort on location as food banks choose nearby lots.

7.2.2 Importance of Choice

Figure 10 presents the posterior mean and 95% credible intervals for various measures

under the Choice System and Old System. The first column gives the un-weighted

sum of estimated welfare in equivalent tons of food. All welfare results are relative

to the baseline random allocation. The mean welfare under the Choice System is

mechanically equal to the average daily amount of food. While both Systems achieve

significantly more welfare than a random allocation, the Choice System yields sig-

nificantly higher welfare than the Old System. Welfare is on average 17.1% higher

under the Choice System than the Old System, which is enough food to provide an

additional 22,300 meals each day. When welfare is weighted according to Goal Fac-

tor, this figure increases to 22.9% higher under the Choice System. These results are

extremely similar to those in Prendergast (2022), who finds that welfare is roughly

21% higher under the Choice System.

The third column shows that, under the Choice System, food banks sort into

consuming closer lots, with around 6,000 km less transportation required each day.

This is in spite of the result from the fourth column that around 22 additional tons

of food is accepted each day under the Choice System.

43The welfare measures reported in this system do not account for endogeneity in the supply of
food, with respect to the allocation mechanism employed. This relationship is unfortunately not
identified, given that I only observe data from the Choice System. However, given that my results
generally show more food being accepted under the Choice System, this simply means my results

39



Figure 10: Counterfactual Results

Mechanism Welfare Welfare Distance Allocated
(unweighted) (weighted) (000 km per day) (tons per day)

Choice 292 745 16 271
System (276, 309) (672, 815) (14.6, 17.4) (253, 284)

Old 242 576 22.3 249
System (203, 276) (415, 706) (22, 22.6) (248, 251)

Note: This table displays posterior means and 95% credible intervals for various measures of

welfare. Welfare is measured in food equivalent terms relative to a purely random allocation, and

mean welfare of the Choice System is normalised to 292. Therefore welfare should be interpreted as

pegged to this scale of 0 (as good as random) to 292 (as good as the Choice System).

When I decompose these welfare differences into the stock dependant component

j(sit) and the lot specific component υilt (which contains transportation costs) we see

that 81.5% of the welfare gains come from the stock dependant component. Reduced

transport costs account for 6.53% of the gain. This is because transport costs are only

estimated to be major cost for a small number of food banks. The additional food

that is accepted under the Choice System only explains 1.72% additional welfare, as

this food is typically lower quality. The remainder is attributed to food banks sorting

into food with higher unobserved idiosyncratic payoffs.

A likely driving force behind these results is that under the Old System food banks

accept food that does not meet their most pressing needs at that particular point in

time. They accept food that might be more useful to a different food bank, and

may prevent them from accepting food they value more in the near future.44 This

is evident for three reasons. First, most food banks are still offered enough food to

prevent their stocks from trending downwards. Therefore it is not that food banks do

not receive enough food. Second, stocks are more variable under the Choice System

than the Old System. The average short run variance is around 25% higher under the

Choice System, and the long variance is almost 100% higher. So, it is not about food

banks smoothing their stocks. As evident from the main result, their stocks spend

more time close to the optimum - the maximum of j(si). Therefore food banks are

choosing to have more variable stocks, occasionally increasing stocks for food that

can be interpreted as lower bounds on the value of choice.
44Some food banks also accept food they would not have accepted under the Choice System just

in case they need the food in future. Whereas under the Choice System they know they will be able
to bid on this food when they need it, rather than having to wait and hope they will be offered it.
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is particularly valuable. Finally, under the Choice System food banks were free to

bid zero on the types of food they were offered in my counterfactuals, but chose not

to. This revealed preference implies that, often, they only want certain types of food

at certain times. Under the Old System they just have to wait to see what they

are offered. Their stocks remain at consistent levels, suggesting they accept different

types of food instead, accepting food that is just good enough.

7.2.3 Distributional Consequences

Figure 11 presents welfare results by food bank, plotting the difference between food

bank specific welfare under the Choice System and the Old System. On average 85%

of food banks are better off under the Choice System.

Figure 11: Individual Welfare

Note: Plots food bank specific welfare under the Choice System minus welfare under the Old

System, ordered by the welfare difference, with 95% credible intervals across posterior draws. On

average 85% of food banks are better off under the Choice System than the Old System.

Given the difference between the weighted and unweighted welfare estimates, it is

unsurprising that there is a positive correlation between this welfare difference and

Goal Factor (ρ = 0.184). I find negative correlation of -0.205 with estimated λis, the

marginal value of wealth. This suggests that food banks who rely less on food from
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Feeding America benefit more from choice, from being able to be picky.45

Relative welfare is negatively correlated with food banks’ mean net donations

µi (ρ ≈ −0.2). This is driven by food banks in the tail of the distribution of net

donations, particular those whose stocks trend downwards under the Old System.

These are the food banks that regularly bid and win food at negative prices under the

Choice System. Welfare is also positively correlated with sampled Σi parameters, the

variance of net donations, but only for non-food, dried, refrigerated, and fresh stocks

(ρ ≈ 0.26). This is sensible — food banks with more uncertain net donations benefit

from being able to choose the food they receive from Feeding America. However I do

not see these correlations for Tinned/Bottled food.

Additional analysis of the factors associated with food banks benefiting from choice

would be valuable. However, these correlations should be interpreted with caution,

as they are very dependent on the assumptions that underpin the structural model.

7.3 Additional Mechanisms

The allocation problem faced by Feeding America is faced by numerous other food

bank organisations around the world, such as the European Foodbank Federation

(FEBA), FareShare (U.K.), and Food bank Australia.46 To my knowledge no other

network employs an allocation mechanism that gives food banks nearly as much

choice. Therefore an important question concerns how their mechanisms compare to

the Choice System, and to what extent they might be able to benefit by giving food

banks more choice over the types of food they receive.

Organisations that do give food banks choice typically allocate food sequentially,

allocating them one at a time as they arrive.47 This has a potential benefit over

45This relationship is small but worrying. Feeding America may not be setting budgets optimally
- even a utilitarian social planner would equate marginal utility of wealth across food banks. I
estimate a lot of variance in these parameters, shown in Figure 22 in Appendix I.2. However the
λis are not well identified in my model, resting on the strong assumption that lot-specific payoffs
υilt have the same variances across food banks. This is certainly an area for future work.

46It is worth recognising that these organisations often face different allocation problems to
Feeding America. For example, transport costs are much more pertinent in Australia. Likewise,
many of these organisations face a problem closer to the scale of individual food banks allocating
food among food pantries. Nonetheless these results remain a useful starting point in analysing the
efficacy of their mechanisms and proposed changes.

47Many food networks use modern technologies to make sequential allocation more feasible than
it was for pre-Choice System Feeding America. Many organisations offer food using apps, and food
banks make use of inventory management tools to quickly check the types of food they need.
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the simultaneous allocation in the Choice System as food banks do not risk winning

too many or too few loads. However, as Akbarpour et al. (2020) and others have

highlighted, waiting until all the lots on a given day have arrived, then allocating

simultaneously may yield better matches. In this setting, food banks may benefit

from having information about everything being allocated that day. They do not

risk accepting cornflakes when they really needed ready meals.

7.3.1 Mechanisms

I now briefly summarise the additional counterfactual mechanisms I consider. A

detailed discussion of the mechanisms and how I solve for the equilibrium value

functions is given in Appendix K.

Old System, all offers: Lots are offered to every food bank in the queue until

the lot is accepted or it has been rejected by every food bank.

Closest: The lot is offered to the closest food bank, and no others. This mech-

anism is used implicitly by food networks who do not allocate food centrally, and

instead link food banks up with additional local donors.

Closest, all offers: The lot is offered in order of distance from the lot.

Like: Each lot is offered to every food bank simultaneously. Food banks can

“Like” the lot, or not. The lot is randomly (weighted by Goal Factor) assigned to

one of the food banks who liked it (Walsh, 2015).

Efficient: The lot is assigned to the food bank with the highest marginal value

(plus continuation value) for the lot. This assumes the social planner can observe

food banks’ needs, and is included for comparison purposes. This mechanism weakly

dominates sequential first- and second-price auctions.

Aside from the “Closest mechanism”, none of these mechanisms are used explicitly

by other food bank networks. However, these give a good overview of some of these

types of mechanisms. For example, the mechanism used by the Foodiverse platform

in Ireland first offers lots to the nearest food bank, and then offers it to all the other

food banks simultaneously as per the “Like” mechanism.

7.3.2 Results

Welfare estimates are presented in Figure 12. There are three key takeaways from this

analysis. First, and most importantly, the Closest mechanism performs very poorly.
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It achieves only 46.2% of the Welfare under the Choice System, and only around two

thirds of the welfare under the Old System. This is indicative of the welfare benefits

from centralised allocation. Food banks who are slightly further away from the donor

are very often willing to pay the added transport costs.

Second, there are significant benefits from offering food to every food bank, as

in the Like and ‘all offers’ mechanisms, all achieving around a 5% increase on the

welfare from the standard Old System. This is very intuitive, since it ensures food is

not turned away when there is still a food bank that needs it.

Finally, welfare under the ‘Efficient’ mechanism does not significantly exceed (nor

even weakly dominate) welfare under the ‘all offer’ and ‘Like’ mechanisms. This

is indicative of the limits of sequential allocation, since that is the main difference

between this mechanism and the Choice System. Food is always allocated to the

food bank who thinks they need it most in that moment. But it may not be the food

most needed by the food bank at that time, and they may forfeit more needed food

later in the day because storage is now more costly. This is very similar to the key

reasons identified for the value of the Choice System over the Old System, that food

banks were accepting sub-optimal food.

8 Conclusion

In this paper I examined the welfare and distributional consequences of Feeding

America’s implementation of the Choice System, and their decision to allow their

food banks greater choice in what food they were allocated. I developed an empirical

model of bidding on the Choice System to estimate food banks’ demand functions.

An important theme of this paper was the role of heterogeneity. I investigated hetero-

geneity across the types of food Feeding America allocates, as well as heterogeneity

in food banks’ needs - both across food banks and within food banks over time. This

heterogeneity is important to understand how food banks’ needs are determined by

the types of food they have access to from their local donors.

I found that welfare was 17.1% higher under the Choice System than under the

Old System. These results are driven by this heterogeneity, particularly heterogeneity

over time. Choice allows food banks to focus their allocations on their most pressing

needs, whereas under the Old System they might be offered food that was more useful

to a different food bank at that particular time. I estimate that 85% of food banks
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Figure 12: Counterfactual Results (2)

Mechanism Welfare Welfare Distance Allocated % Better Off
(unweighted) (weighted) (000 km per day) (tons per day) (under CS)

Choice 292 745 16 271 1
System (276, 309) (672, 815) (14.6, 17.4) (253, 284) (1, 1)

Old 242 576 22.3 249 0.85
System (203, 276) (415, 706) (22, 22.6) (248, 251) (0.803, 0.893)

Old System 263 649 19.4 264 0.799
All offers (222, 297) (477, 785) (19, 20) (263, 266) (0.738, 0.852)

Closest 134 311 0.305 58 0.945
(75.7, 183) (43.9, 530) (0.298, 0.311) (57.4, 58.6) (0.918, 0.967)

Closest 258 632 14 265 0.738
All offers (218, 294) (460, 772) (13.7, 14.3) (264, 267) (0.676, 0.795)

Like 264 653 19.4 264 0.819
(226, 296) (489, 784) (19, 20) (263, 266) (0.762, 0.877)

Efficient 266 661 19.2 246 0.718
(228, 297) (510, 783) (18.7, 19.8) (244, 249) (0.656, 0.779)

Note: This table displays posterior means and 95% credible intervals for various measures of welfare.

The final column gives the percentage of food banks who are estimated to be (weakly) better off

under the Choice System than each alternative mechanism. A higher number is worse, except for

the Choice System which has value of 1 by construction.

are better off under the Choice System. The largest benefits are seen by food banks

with the fewest and most variable local donations, benefiting from the flexibility

the Choice System permits. This study has important policy implications, both for

Feeding America and other food bank networks around the world. I find that welfare

under the Choice System significantly exceeds welfare under a number of alternative

mechanisms. I found particularly poor welfare consequences of sending food only

to the nearest food bank, and that mechanisms which allocate food sequentially

as donations arrive are very limited in their efficacy. These finding highlight the

importance of good market design.

Future work should consider the external validity of these results, and their appli-

cability in other food bank settings. For example, applying the analysis to data from

other food bank networks. Future work should also consider additional mechanisms,

potentially building on the Choice System, for application in these other settings and

even perhaps improving on the important work already done for Feeding America’s

allocation problem.

45



References

Agarwal, N. (2015). An empirical model of the medical match. American Economic

Review, 105(7):1939–78.

Agarwal, N., Ashlagi, I., Rees, M. A., Somaini, P., and Waldinger, D. (2021). Equilib-

rium allocations under alternative waitlist designs: Evidence from deceased donor

kidneys. Econometrica, 89(1):37–76.

Agarwal, N., Hodgson, C., and Somaini, P. (2020). Choices and outcomes in assign-

ment mechanisms: The allocation of deceased donor kidneys. Technical report,

National Bureau of Economic Research.

Agarwal, N. and Somaini, P. (2020). Revealed preference analysis of school choice

models. Annual Review of Economics, 12:471–501.

Akbarpour, M., Li, S., and Gharan, S. O. (2020). Thickness and information in

dynamic matching markets. Journal of Political Economy, 128(3):783–815.

Altmann, S. (2022). Identification and estimation of a dynamic multi-object auction

model, available here.

Arcidiacono, P. and Miller, R. A. (2011). Conditional choice probability estimation

of dynamic discrete choice models with unobserved heterogeneity. Econometrica,

79(6):1823–1867.
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A Data

In this Appendix I present additional details on how I constructed the dataset used in my analysis.

Appendix A.1 focuses on the Choice System data, received from Feeding America, outlining how

I cleaned and categorised the data. This Appendix also details how I identified joint bidding and

which lots were sold by food banks (‘Maroon Pounds’). In Appendix A.2 I detail the auxiliary

datasets used in my analysis, used to locate food banks and construct their Goal Factors.

A.1 Choice System data

The variables included in the data were as follows:

1. A unique auction identifier

2. Date of the auction

3. Details on all the goods included

4. The number of Pounds in the lot

5. The number of identical lots being auctioned

6. Bids placed on the lot

7. anonymised Foodbank ID that placed each bid

8. The winning Bid(s)

9. An indicator stating whether the Auction/Bid was cancelled

10. The geographic location of the lot

Food banks were anonymised and indexed from 1 to 165. I did not observe whether a bid was

placed jointly, nor whether a load was sold by a food bank. I also do not observe whether an

auction occurred in the morning or in the afternoon. Finally, I only observe an auction on a

particular date if at least one bid is received on that lot. If an auction that consists of two identical

loads is observed with just one bid on day t, and another observation with just one bid on day t+ 2

I assume that the auction also appeared on day t + 1 with only one load available. I must assume

that it is not the case that auction appeared on day t− 1 but no one placed a bid.

A.1.1 data cleaning

The 1344 cancelled auctions and bids were removed from the data, with the assumption that bidding

behaviour was not affected by cancellations.

There were various errors in the record data. Some errors could be corrected, such as misspelt

names of products, while several had to be removed. Every load listed as being heavier than 97, 000

pounds (the maximum weight for a flat bed truck) was assumed to be a mistake, and fixed to 40, 000

pounds (the modal weight). Every load weighing less than 5000 pounds was also fixed to 40, 000.

6 auctions were removed from the data. These lots included items such as karaoke machines and

a flat bed truck. These lots were removed under the assumption that the they fit outside the food

banks’ ordinary remits.
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A.1.2 categorisation

Goods are classified into categories (mostly taken from Prendergast (2022)), subcategories,48 Uses

and Storage Method. Figure 13 panel (A) plots the categories as a proportion of the total amount

of food auction. The plot excludes multiple identical auctions, which has the result of artificially

reducing the proportions of Fresh Produce and Beverages down from 24% and 17% respectively.

Figure 13 panel (B) plots subcategories as a word cloud, with more common subcategories larger.

‘Uses’ are not used in the current model specifications. Uses includes Meals, Ingredients, Condi-

ments, Snacks, and Non-Food. Meals are items that could be eaten on its own as part of a reasonably

healthy diet for either breakfast, lunch, or dinner. Multiple Ingredients can be mixed together to

form a meal. Condiments can be added to a meal to enhance it. Snacks can be eaten on their own,

though not necessarily part of a meal. Snacks includes drinks. Non-food items are inedible items,

such as cleaning products. This also includes formula and baby food.

Storage methods includes Shelf, Tinned, Refrigerated, Fresh, and Non-Food. The Non-food

category is identical to the non-Food Use category. Shelf items can be stored on a shelf, are

generally dried goods, and have extremely long shelf lives. They are generally light but bulky.

Tinned food, which includes jars and bottles, have long shelf-lives and are generally compact and

heavy. Refrigerated food must be stored in a fridge, but still expire reasonably quickly. Fresh food

is food one wouldn’t generally store in a fridge, and generally has only a limited shelf life. This

includes both fresh produce and freshly baked goods such as bread. Any item that was additionally

listed as ‘Shelf Stable’, such as UHT milk was put in the tinned storage category.

Figure 13: Composition of food allocated: Categories and Subcategories

Code Category Subcategory Use Storage Description

48This is performed to ensure at least 30 lots per subcategory. Subcategories are more granular
the more observations there are. E.g. for cereal and beverages this includes brands, whereas all
cheese is lumped together.
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1 Baby Non-food N F unspecified baby

2 Baby diaper Non-food N F nappies

3 Baby food Non-food N F Baby food

4 Baby formula Non-food N F Baby formula

5 Beverage Snack Tin unspecified Bev

6 Beverage capri Snack Tin capri-sun

7 Beverage coffee Snack Shelf ground/instant

8 Beverage dry Snack Shelf chocolate/milk powder

9 Beverage fj Snack Tin Orange/Apple/Grape juice - high quality, ”pure”

10 Beverage gator Snack Tin Sports drink (gatorade)

11 Beverage ic Snack Tin Iced/Alternate coffee

12 Beverage juice Snack Tin juices, lower quality, mixed, e.g. tropical punch, fruit shoot

13 Beverage ka Snack Shelf Kool-Aid

14 Beverage pop Snack Tin fizzy drinks, e.g. coke

15 Beverage propel Snack Tin Propel brand water/sports water

16 Beverage pshake Snack Shelf Protein shake/powder

17 Beverage shake Snack Tin Milk shakes

18 Beverage tea Snack Shelf Tea/Tea bags

19 Beverage vf Snack Tin V8 juices

20 Beverage water Snack Tin Bottled water

21 Baked Good Snack Shelf unspecified BP

22 Baked Good bread Ingredient Fresh Bread

23 Baked Good cake Meal Fresh cake, cupcakes, muffins

24 Baked Good dough Ingredient Fridge cookie dough, bread dough, etc

25 Baked Good flour Ingredient Shelf flour, cake mix, bread mix

26 Baked Good other Snack Shelf miscellaneous BP

27 Baked Good pastry Snack Fresh croissants, waffles, pancakes etc

28 Baked Good stuffing Condiment Shelf Stuffing mix

29 Cereal Meal Shelf unspecified cereal

30 Cereal bran Meal Shelf healthy bran cereal (fibre)

31 Cereal cheerio Meal Shelf Cheerios

32 Cereal flake Meal Shelf un-sweatened flakes (spK, corn etc)

33 Cereal gran Meal Shelf granola

34 Cereal Kashi Meal Shelf unspecified Kashi

35 Cereal Kellogg Meal Shelf unspecified Kellogg

36 Cereal ns Meal Shelf non-sugared cereal (rice-krispies)

37 Cereal other Meal Fridge miscellaneous non-dry cereal

38 Cereal oat Meal Shelf oats/grits/porridge

39 Cereal PL Meal Shelf unspecified Private Label (e.g. Post)

40 Cereal sugar Meal Shelf fruit loops, apple jacks etc

41 Condiment Condiment Tin unspecified condiments

42 Condiment dressing Condiment Tin Salad dressings, glazes

43 Condiment fruit Condiment Tin Fruit sauces, preserves

44 Condiment gravy Condiment Shelf Gravy granules

45 Condiment jelly Condiment Tin Jam

46 Condiment ketchup Condiment Tin Ketchup

47 Condiment mayo Condiment Tin Mayonnaise

48 Condiment mustard Condiment Tin Mustard

49 Condiment other Condiment Tin Miscellaneous cond (e.g. frosting)

50 Condiment oil Ingredient Tin Cooking oils

51 Condiment pasta Condiment Tin Pasta sauces

52 Condiment PB Condiment Tin Peanut Butter

53 Condiment pickle Condiment Tin Pickled Gherkins

54 Condiment salsa Condiment Tin Salsa/Guacamole/dips

55 Condiment sauce Condiment Tin BBQ sauce, etc

56 Condiment stock Ingredient Shelf Stock (assumed cube form)

57 Dairy Ingredient Fridge unspecified Dairy

58 Dairy butter Condiment Fridge Butter/Margarine/Spread

59 Dairy cc Condiment Fridge coffee-creamer, coffee-mate (assumed liquid)

60 Dairy cheese Ingredient Fridge mostly cottage/cream cheese

61 Dairy cream Condiment Fridge Mostly sour cream

62 Dairy dessert Meal Fridge cheese cake etc

63 Dairy egg Ingredient Fresh eggs

64 Dairy ll Ingredient Tin evaporated/preserved milk

65 Dairy milk Condiment Fridge milk

66 Dairy milk-alt Condiment Fridge non-Dairy milk

67 Dairy milk-flav Snack Fridge flavoured (chocolate) milk
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68 Dairy pie Meal Fridge Sweet pies, e.g. Apple/custard

69 Dairy yog Snack Fridge Yoghurt

70 Fresh Ingredient Fresh unspecified produce

71 Fresh apple Snack Fresh Apples

72 Fresh cabbage Ingredient Fresh Cabbages

73 Fresh carrot Ingredient Fresh Carrots

74 Fresh citrus Snack Fresh Citrus fruits

75 Fresh corn Ingredient Fresh Corn (maize)

76 Fresh fruit Snack Fresh unspec/misc fruit

77 Fresh melon Snack Fresh melons

78 Fresh other Ingredient Fresh Miscellaneous veg

79 Fresh onion Ingredient Fresh Onions or garlic

80 Fresh potato Ingredient Fresh Potatoes

81 Fresh squash Ingredient Fresh Squash/Pumpkin,Yams

82 Frozen Ingredient Fridge unspecified/misc frozen

83 Frozen bp Snack Fridge Frozen Baked Goods, e.g. bread rolls

84 Frozen dairy Ingredient Fridge Frozen milk, butter, eggs

85 Frozen meal Meal Fridge Frozen meals/pies/pizza

86 Frozen meat Ingredient Fridge Frozen chickens etc

87 Frozen veg Ingredient Fridge peas, carrots etc

88 Health/Beauty Non-Food Non-Food unspecified HBC

89 Health/Beauty body Non-Food Non-Food body creams/moisturiser

90 Health/Beauty dental Non-Food Non-Food dental hygiene

91 Health/Beauty deod Non-Food Non-Food deodorant

92 Health/Beauty detergent Non-Food Non-Food detergent powder/tablets

93 Health/Beauty drug Non-Food Non-Food medicines/ointments

94 Health/Beauty nutri Non-Food Non-Food vitamins / unspecified nutritional items (e.g. protein powder)

95 Health/Beauty other Non-Food Non-Food miscellaneous (e.g. razors)

96 Health/Beauty shampoo Non-Food Non-Food shampoo/conditioner

97 Health/Beauty soap Non-Food Non-Food hand/body soap

98 Health/Beauty sun Non-Food Non-Food sun-cream/block

99 Meal Meal Fridge unspecified Meals

100 Meal bert Meal Fridge Bertolli ready meals

101 Meal breakfast Meal Fridge breakfast meals

102 Meal broth Ingredient Tin Broth - assumed carton stock

103 Meal cb Meal Tin Chef Boyardee ready meals

104 Meal chang Meal Fridge P.F. Chang ready meals

105 Meal chilli Meal Tin Tinned Chilli / meat ’n’ beans

106 Meal healthy Meal Fridge Healthy/Nutritious ready meals (e.g. weight-watchers, fish)

107 Meal lunch Meal Fridge Lunchables (ready packed lunches)

108 Meal mc Meal Shelf Marie Callender ready meals

109 Meal meat Meal Fridge Meat based ready meals

110 Meal other Meal Fridge miscellaneous ready meals

111 Meal pasta Meal Shelf Pasta ready meals, mac n’ cheese etc

112 Meal pie Meal Fridge/Shelf Savoury pies / pastries (often shelf stable)

113 Meal pizza Meal Fridge pizzas

114 Meal sand Meal Fridge sandwiches

115 Meal side Snack Fridge ready meal sides

116 Meal soup Meal Tin tinned soups

117 Meal veggie Meal Fridge vegetarian/vegan meals

118 Meat Ingredient Fridge unspecified meat

119 Meat bacon Ingredient Fridge Bacon

120 Meat beef Ingredient Tin Mostly tinned savoury mince

121 Meat burger Ingredient Fridge various burger patties

122 Meat chicken Ingredient Fridge Chicken

123 Meat fish Ingredient Fridge Fish

124 Meat lunch Ingredient Fridge Deli/luncheon meat

125 Meat other Ingredient Fridge miscellaneous meats (e.g. pork)

126 Meat sausage Ingredient Fridge Mostly hot dog sausages

127 Non Food Non-Food Non-Food unspecified non-food

128 Non Food battery Non-food Non-food batteries

129 Non Food bleach Non-food Non-food Bleach/solvent cleaning products

130 Non Food box Non-food Non-food banana boxes/crates

131 Non Food other Non-food Non-food e.g. clothes, bags, window cleaner, wipes

132 Non Food salt Non-food Non-food non-food salt

133 Non Food towel Non-food Non-food paper towels

134 Pasta Meal Shelf Dried pasta

135 Pasta ben Ingredient Shelf Uncle Ben’s rice

136 Pasta other Ingredient Shelf Miscellaneous pasta product (lasagna sheets etc)
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137 Pasta rice Ingredient Shelf dried rice

138 Snack Snack Shelf unspecified snack

139 Snack bar Snack Shelf snack/granola bars

140 Snack bp Snack Shelf baked snacks, e.g. butterfinger

141 Snack candy Snack Shelf candy/chocolate

142 Snack chips Snack Shelf crisps

143 Snack cookies Snack Shelf biscuits

144 Snack crackers Snack Shelf crackers

145 Snack fruit Snack Shelf rollups/cups

146 Snack jelly Snack Shelf jello (pre/unmixed)

147 Snack kellogg Snack Shelf unspecified Kellogg brand snacks

148 Snack nuts Snack Shelf nuts/trailmix

149 Snack other Snack Shelf miscellaneous snacks

150 Snack pbar Snack Shelf protein bars

151 Snack pc Snack Shelf pop-corn (mostly popped)

152 Snack pretzel Snack Shelf pretzels

153 Snack pt Snack Shelf pop-tarts

154 Snack pud Snack Tin tinned pudding

155 Snack seed Snack Shelf sunflower seeds

156 Snack sj Snack Shelf slim Jims, jerky, biltong

157 Vegetables Ingredient Tinned unspecified non-fresh

158 Vegetables beans Ingredient Tinned baked beans

159 Vegetables fruit Ingredient Tinned canned fruit (escaloped apples etc)

160 Vegetables fry Ingredient Fridge chips/potato wedges/ fries

161 Vegetables gbean Ingredient Tinned beans (non-baked, mostly green)

162 Vegetables other Ingredient Tinned miscellaneous veg

163 Vegetables potato Ingredient Fridge ready to cook potatoes

164 Vegetables tomato Ingredient Tinned tinned tomatoes

A.1.3 Joint bidding

I did not receive information of joint bidding. However, in some circumstances joint bidding can be

inferred. For example, when only one load is auctioned but multiple foodbanks are listed as winning.

Likewise, I observe the amount paid by winners (separate to their bid): If two food banks jointly

bid 50 shares each I observe that the ”bid paid” was 100. I use these cases to identify common

bidding coalitions. I then assume that whenever one of these coalitions appears to place a bid, that

they are placing a joint bid. By this method I identify around 30 coalitions, and infer that 4.5% of

bids are joint bids. This is slightly lower than the true value of 5% reported in Prendergast (2017).

This is likely because I do not detect coalitions that never won together in the data.

I also risk classifying non-joint bids as joint bids when a coalition chooses not to bid jointly on

occasions. This is only a problem if they did not win, and unlikely to lead to much inaccuracy if

they do not win. A further problem is that I occasionally see multiple lots being auctioned, with

more winners than lots (without a known coalition among these food banks). I am unable to infer

which subset of bidders forms a coalition, and so am are forced to assume, incorrectly, that none of

the bids are joint. This only happens a small fraction of the time, around 0.01%, so is unlikely to

lead to much inaccuracy.

Joint bidding in the model

I do not consider the strategic considerations behind joint bidding. I do however consider how this

impacts the inverse bid function and winnings. If a bid was joint between n people, I assume the

pounds won are divided equally among the n bidders. As are the distance costs and the ‘lot specific
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value’.49 I also recognise how the food banks’ beliefs about the probability they win given their joint

bid is higher than either individual bid. Therefore I am able to recognise how the total (expected)

surplus of the joint bid may exceed either individual surplus from placing a single bid equal to the

joint bid - if storage costs are convex, sharing these load reduces the total cost incurred. When

simulating the Choice System I am unable to simulate the joint bidding procedure.

A.1.4 Maroon Pounds

I do not observe which loads were sold by food banks (‘Maroon Pounds’). However, after I had

located food banks (discussed in Appendix A.2) considered whether any of the auction origin zip-

codes matched the zipcodes of the food banks I had identified. Matched observations all had auction

identifier codes that began with ”ML” rather than ”L” (followed by a string of numbers). Therefore,

I focused on these auctions as Maroon Pounds, which make up 4.5% of unique auctions.

Maroon Pounds do not enter the current version of my model. Endogenising the decision to

sell food adds too much complexity. However, the food banks responsible for consuming the most

through the Choice System almost never sell food. As my results are predominantly driven by these

food banks, ignoring Maroon Pounds is unlikely to lead to much inaccuracy. However, for the sake

of posterity I will continue to describe how I match food banks to Maroon Loads.

One difficulty with matching food banks to maroon loads is that food banks move over time,

often merging with other food bank organisations, so that the zipcode of a lot auctioned in 2014

may not match the zipcode I found for that food bank in 2019. Broadly speaking, I located food

banks by finding the name of the city in which they are located, as well as their state. It is rare

to have multiple food banks in the same. I therefore decided to match food banks to maroon loads

under 3 conditions: First, if the zipcodes matched. Failing that, if they are located in the same

city. Failing that, if they are within 20 miles of one another. I assume that the remaining Maroon

Pounds are sold by the small food banks and food rescue organisations whose locations I cannot

identify, or who are never observed bidding in my data.

A.2 Auxiliary data

I use five additional datasets in my analysis. Two data sets received from Prendergast (one of

the original designers of the Choice System) containing losing bidders by auction for 2014, and

also poverty figures by county. Third, food bank zipcode data from Feeding America’s Food Bank

Locator online tool.50. Fourth, Food bank catchment areas, defined at the County level, from

Feeding America’s ‘Hunger in America’ on-line resource.51 Finally, Populations figures by county

were then taken from the 2015 US census Small Area Income and Poverty Estimates (SAIPE).

These datasets were used to locate food banks and evaluate their Goal Factors.

49In principle I could split the lot according to the fraction of final expenditure, however joint
bids in which one bidder bids an extremely small or zero amount, are not uncommon.

50Accessible at https://www.feedingamerica.org/find-your-local-foodbank
51Available here: https://map.feedingamerica.org
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A.2.1 Locating food banks

Prendergast kindly sent me a dataset containing data on losing bidders by auction for 2014. Impor-

tantly, this data contained the nearby towns of the bidding food banks. That is, food banks were

identified by the town they were located in. I was able to cross-reference this data with the Choice

System data for 2014, merging by date and the origin of each lot.

For each anonymised ID I found the town that appeared in the largest proportion matched

auctions. For each town I found the anonymised ID that appeared in the largest proportion of

matched auctions (these two proportions need not be equal). If the two sets of pairings were

identical, I listed the ID/town combination as matched, removed it from the pool of remaining IDs

and towns, and continued the process until I was unable to remove any more matched pairs. This

process allowed me to infer the nearby towns of all food banks who placed a bid in 2014. This

allowed me to infer approximate locations for 85% of food banks, who together consumed just over

98% of all food on the Choice System. It was clear that my food bank ID numbers had been listed

in alphabetical order from 1 to 165 before anonymisation, validating my location matches.52

Given knowledge of nearby towns, I then used Feeding America’s Food Bank Locator online tool

to find zip codes for these food banks. I was unable to find three food bank’s locations in this way,

as they listed town names which were nowhere near any of Feeding America’s food banks. I kept

their locations as unknown.

One of the most frequent bidders in the Choice System has a commonly occurring town name,

with food banks listed in two of these towns. For these two candidate food banks I examined

their annual financial statements from 2014 to find how much non-monetary donations they had

received from Feeding America. One received an extremely large amount, while the other received a

reasonably small amount. Because the food bank in question consumed an extremely large amount

of food on the Choice System I reasoned it was most likely the food bank that received the larger

non-monetary donations from Feeding America.

A.2.2 Distance

To find the distance between every lot × food bank combination I converted zipcodes into longi-

tude/latitudes, then used the ”distGeo” function from the R package ”geosphere”. This package

finds the distance of the geodesic between any two points on the globe. In principle I could have

found the shortest road distance using arcGIS software, as this would more accurately represent

the transportation costs. However, this software is generally extremely computationally intensive.

Given the large number of food bank × lot combinations (≈ 3.6 million) this option was not feasible.

A.2.3 Calculating Goal Factors

I did not receive recent Goal Factor figures. However, this data can be constructed using the

locations of food banks, Goal Factor formulae given in ?, and information on local poverty and

52Based on this alphetical order, and knowledge of all Feeding America’s associated food banks,
I was able to match an additional 3 food banks by visual inspection
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food insecurity rates from Feeding America’s ‘Hunger in America’ on-line resource. Under the Old

System a food bank’s Goal Factor was given by:

GFOSi =
Populationi

PopulationUS
+

Povertyi
PovertyUS

(5)

Where Populationi refers to the number of people living in food bank i’s catchment area, and

Povertyi refers to the number of people living below the poverty line in food bank i’s catchment

area. Food bank catchment areas, defined at the County level, are given in Feeding America’s

‘Hunger in America’ on-line resource. Populations figures were then taken from the 2015 US census

Small Area Income and Poverty Estimates (SAIPE). Poverty rates, by county, are given in an

additional dataset received from Prendergast, in turn received from Feeding America. Presumably

these were the figures used to construct the Goal Factors to begin with.

Under the Choice System, the Goal Factor formula was updated to reflect that even individuals

above the poverty line often use food banks. The new formula includes Poverty′i, the number of

people between the poverty line and 185% of the poverty line, as well as Population′i, the number of

people above 185% of the poverty line. These figures were included in the dataset I received. These

figures are weighted according to empirical usage weights. The updated formula is given by:

GFCSi =
0.73 Povertyi + 0.22 Poverty′i + 0.05 Population′i

0.73 PovertyUS + 0.22 Poverty′US + 0.05 Population′US
(6)

I set the Goal Factors of food banks with unknown locations to the smallest known Goal Factor.53

In this paper I only use the new Goal Factors.

For a small number of food banks their expenditure did not match up with their Goal Factors.

That is, they spent significantly more shares than the amount they received (as implied by their

Goal Factor). This is the case even when I take into account that food banks stop receiving new

shares once they hit a 200,000 limit.

I calibrate Goal Factors and initial budgets to take this into account. I find the smallest absolute

deviation from the Goal Factors implied by the formulae such that: 1. No food bank is ever in debt

for longer than 30 days. 2. Food banks with above average Goal Factor are never in debt (as these

food banks do not get access to credit). 3. Food banks’ budgets cannot exceed the 200,000 share

limit. 4. No food bank’s budgets have a trend (positive or negative) of more than 100,000 shares

over the period. 5. No food bank’s budgets have a statistically significant (at the 5% level) trend.

That is, we expect that their budgets should neither trend up nor downwards over time.

I perform this calibration as follows: Given proposed Goal Factors I find the initial share alloca-

tion that satisfies criteria 1-4. This is done by iteratively changing the initial allocation, simulating

incomes (given observed expenditures) to find budgets, until the necessary initial allocation is con-

verges. Then, in an outer loop, I find the Goal Factors that satisfy criteria 1,2, and 5. At each step

53Given that these food banks did not bid regularly enough for me to identify their location,
presuming that these food banks also would not accept any loads they are offered in counter-factual
simulations ensures that my estimates remain conservative. For some catchment areas Feeding
America appears to have used slightly different cut-offs than the 100% and 185% lines.
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I update Goal Factors by taking the average of the prior estimated Goal Factor and the implied

new Goal Factor that satisfies the criteria. The process converges in around 100 iterations. For

95% of food banks Goal Factors change very little in relative terms. The largest change is seen by

one food bank that consumes an extremely large quantity of food on the Choice System, but has

an extremely low initial Goal Factor. However, inspection reveals that this food bank exists in a

so-called ‘food desert’, meaning they likely have very little access to local donors, so must rely on

Feeding America for the majority of their food.

To validate this approach I compare the distributions of calibrated initial allocations and Goal

Factors to those used in Prendergast (2017), received from Prendergast, but that I was unable to

link to my data. Importantly, these figures are around 5 years out of date relative to my data. The

two sets of distributions are shown in 14. The distribution of intial budgets are relatively similar,

as are the distributions of Goal Factors, with the exception that my estimated Goal Factors have

a larger right tail. Importantly, however, the distribution of my estimated Goal Factors fits the

observed distribution better than my initially calculated Goal Factors.

The Goal Factor was designed to ensure that a food bank with a 1% higher goal factor received

1% more food. Prendergast (2017) found that a 1% increase in Goal Factor was associated with a

0.45% increase in food won from the Choice System. I found that a 1% increase in estimated Goal

Factor was associated with a 0.81% increase in consumption. Given that Prendergast’s estimation

was done on data with very different characteristics to mine, the inaccuracy of these estimated

figures is unclear. The difference may be driven by the 15% of unknown Goal Factors in my data.

If these food banks had relatively high goal factors this would drive the observed discrepancy, since

we know these food banks choose not to consume much. Either way, the relationship between Goal

Factor and consumption is not especially strong; the R2 from a log-log regression is only 0.35.

This weak correlation demonstrates the importance of food wealth in determining consumption

behaviour. High Goal Factor food banks, who also happen to have many local donors, may not

want to consume much food through the Choice System, weakening the correlation.

B Additional Descriptive Analysis

In this appendix I discuss additional descriptive analysis of the Choice System, building on the

results in Section 3.1. I focus on establishing evidence of variation in bidding behaviour over time.

I investigate temporal variation in bidding behaviour using the Tobit specification given in

equation B below. I investigate how each food bank i’s bid on food of type g varies across months

m, writing αigm for these average bids. I estimate the model only on food banks who win at least

100 lots over the period. I also control for the distance between the food bank and the lot. I drop

the first and last months due to incomplete data. Each food bank × type × month cell averages

around 80 observations. I also estimate a restricted model with average bids αig fixed over time.

The hypothesis test of interest is whether αigm = αig for all m.
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Figure 14: Distribution of Goal Factors and intial budgets

Note: These plots show histograms of Goal Factors and initial budgets across food banks. ‘Observed’

are the figures I received from Prendergast. ‘Calculated’ are the figures I calculated using poverty

data and the formulae presented above. ‘Estimated’ are the figures I calibrated using the approach

discussed above, that were then used in my counterfactual simulations.

bitl = αigm + βi distanceitl + εitl b∗itl =

bitl if bitl ≥ Rh
Rh if Otheriwse

εitl ∼ N(0, σih)

This hypothesis test may be underpowered to reject a null hypothesis of constant average bids.

It does not take into account that average bids likely don’t shift neatly at the beginning of each

month. It also does not take into account that large variation in bids within a month (which may

cause failure to reject the null) are also indicative of variation in food banks’ needs. If the within

month variation is on a similar scale to the across month variation in average bids this reduces my

power to reject the null hypothesis.

However, the test may be over powered if variation in factors other than food banks’ needs is

mistaken for variation in needs. For example, if the quality of food varies unobservably over time,

this may cause systematic variation in bidding behaviour that should not be attributed to variation

in food banks’ needs. To account for this possibility I estimate a second restricted specification

with food bank specific month fixed effects. These fixed effects will capture variation in bidding

behaviour that is common across food types. Under this specification a rejection of the null is

evidence of systematic variation over time in bidding behaviour on specific types of food. This

specification is almost certainly underpowered. If food banks need more food of all types in certain
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months the fixed effects will also soak up this variation.

Figure 15 plots the likelihood ratio test statistic across food banks. The dotted lines gives the χ2

critical values for tests at the 5% significance level. The red points give the baseline specification,

while the blue points give the specification including month fixed effects.

Figure 15: Heterogeneity Across Time

Note: This figure plots likelihood ratio test statistics for the hypothesis test that average bids for each type of food

are constant over time, against the alternate hypothesis that bids vary by month. The estimated model controls for

censoring, distance, and lot composition. The blue results also include month fixed effects. Under this null hypothesis

the test statistic takes a χ2 distribution with 200 (red) or 160 (blue) degrees of freedom. Critical values for tests at

the 5% significance levels are plotted as horizontal lines.

I can reject the null hypothesis of constant average bids over time, at 5% significance level, for

96% of food banks in my baseline specification, and 70% of food banks for the month fixed effects

specification. Therefore I have strong evidence that food banks’ bidding behaviour, and hence their

needs, vary significantly over time.

C Stationarity

In this appendix I present evidence that the equilibrium stock process is stationary - that the

distribution of stocks remains constant over time. I focus on two types of stationarity: First,

whether stocks trend over time. Second whether stocks follow a random walk.

In Appendix C.1 I present suggestive evidence that stocks neither trend upwards nor downwards

over time, by testing for structural breaks in bidding behaviour. In Appendix C.2 I discuss how

an additional assumption about how observed winnings reacts to changes in the stock allows me to

test whether the equilibrium stock process follows a random walk. In Appendix C.4 I discuss how
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the results of this analysis gives us information about food banks’ unobserved stock process, giving

us natural priors for µi and Σi.

C.1 Trend Stationarity

If stocks trend over time we expect that bidding behaviour should follow a similar pattern. Therefore

we can investigate the existence of trends by looking for evidence of trends in bidding behaviour.

If stocks have a linear trend it is ex-ante unclear whether average bids will also have a linear

trend. To allow for the possibility of non-linear trends in bidding behaviour I focus on testing for

the existence of more general structural breaks in behaviour. I focus on average monthly bids by

food bank and food type, using the estimated αigt parameters estimated from the tobit specification

in Section 3.1. If these parameters do exhibit a linear trend a generalised test for structural breaks

should pick this up. I omit the Fresh storage type due to the structural break caused on day 553 of

my sample when fresh food ceased to be allocated on the Choice System. Even if the Fresh stock

process does not exhibit any structural break (as remains my hypothesis) I cannot estimate average

bids after this break, given that no fresh food was allocated. In Appendix H.2 I give additional

details of how I model this structural break.

I test for a structural break in the series {αigt}t∈{1...T}. For each t I split the sample into a

before and after group, then run a t-test on the equality of means. This is performed separately for

each food bank × storage type combination, and I allow the variances to differ in the before and

after periods. I then plot the distribution of estimated t-statistics. Under the null hypothesis of no

structural breaks, these statistics are t-distributed with 40 degrees of freedom.54 Therefore I can

compare the resulting distribution of t-statistics from their distribution under the null hypothesis.55

In figure 16 I plot the distribution of estimated t-statistics along side the distribution of these

statistics under the null-hypothesis. Under the null we expect that 5% of test statistics will be

above the critical values for a two-tailed test at 5% significance level (= 2.02). I find that 5.4% of

test-statistics exceed the critical values. This gives some evidence that bidding behaviour does not

exhibit trends or structural breaks, and so neither do stocks.

C.2 Cointegration

I now discuss how I can test whether the equilibrium stock process follows a random walk. I must

maintain the assumption that stocks do not contain any sort of time trend, such as a linear trend.

Fortunately the results presented in Appendix C.1 gives us evidence that equilibrium stocks are

54Although I have 44 months of data, I do not have all the data on the first and last month. So
I only estimate 42 monthly means. I also adjust the t-statistics to account for sampling variation in
the estimated αigt using the law of total variance. Because I only have a finite number of months I
assume normality of average monthly bids, resulting in this t-distribution.

55Using a Kolmogorv-Smirnov test I can reject the null hypothesis, at a 5% significance level,
that the t-statistics come from this distribution. However, this is due to a lack of fit around the
mode of the distribution, whereas the tails of the distribution fit much better.
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Figure 16: Distribution of t-Test statistics

Note: This plot shows the distribution of t-test statistics, looking for structural breaks in average

monthly bids. I focus on monthly bids between the 2nd and 43rd month. I also plot the standardised

t-distribution with 40 degrees of freedom. I test for the presence breaks at each month between the

7th and 37th month. Tests are performed at the food bank × storage type level. Test-statistics are

adjusted to account for sampling uncertainty in the estimates of average monthly bids.

unlikely to exhibit time trends.56

In the main text I focus on the morning state, before any auctions take place. However for the

purposes of this appendix it is most convenient to focus on the evening state, se, after the final

auction has taken place. The evening stock transition process is therefore given by:

seit = seit−1 + wT
itz

g
t + xit

The only difference is that the superscript on winnings is not lagged, as it is for the morning process.

Evidently wT
itz

g
t depends on net daily donations xit, which can be considered short term changes

in the stock. It will also depend on the previous stock seit−1. This is where the similarity to a

cointegration framework arises. Food banks likely have an ideal level of stock they would maintain

- they do not want the warehouse to be too empty, nor too full. Therefore, as well as reacting to

short term changes in net daily donations, winnings should also respond to how far off optimal the

previous stock is.

56A linear trend is not identified from winnings data. Winnings are a measure of changes in
the stock, so any linear trend is captured in the constant term. But, the constant term of average
winnings also captures average net local donations µi. I am unable to disentangle these two objects
using winnings data alone.
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If I observed stocks as well as winnings I could easily test this relationship following the procedure

of Engle and Granger (1987). Instead, I make the additional assumption that the equilibrium stock

process is given by:

seit = δseit−1 + αxit + εit

This assumption states, on average, the evening stock ends up as some fraction of the previous

evening stock, plus some fraction of net local donations. These are the fractions that equilibrium

winnings could not offset. I do not impose that this process is stationary. For example, it is possible

that δ = I, so that the process follows a random walk with drift. I discuss εit in detail shortly. I

must assume there is not a linear trend in this process. For simplicity I focus on the case in which

δ and α are diagonal matrices, essentially focusing on one component of stocks at a time.

This assumption on the equilibrium stock process is really an assumption on the equilibrium

winnings process. Equating the two previous equations and rearranging yields something similar to

a standard error correction process:

wT
itz

g
t = (α− I)xit + (δ − I)seit−1 + εit (7)

This states that, on average, winnings offset some fraction of that day’s net donations, as well as

some fraction of the previous stocks. The residual random variable ε captures idiosyncrasies that

affect the food bank’s winnings. For example, how much is actually actioned that period, how many

rival active bidders there are, and other attributes of the lots. It likely exhibits correlation over

time, is non-normally distributed, lumpy, and may have non-zero mean. Importantly, this variable

is assumed independent of xit.

If δ = 0 and α = 0 then winnings perfectly offsets changes in the stock and daily donations.

This means that equilibrium stocks only vary with εit. Instead, if δ = I, so that the stock process

followed a random walk, this equation would state that winnings do not depend on the previous

stock. This asserts that winnings only react to xit and εit. In this way, a random walk stock process

suggests that the food bank only reacts to daily stock changes, treating past stock changes as a lost

cause, not trying to offset past losses. This means allowing previous losses to propagate completely

over time, creating the random walk. This gives us an intuitive way to test for stationarity - test

whether winnings depend on previous stocks.

Substituting the equilibrium stock process into Equation 7 yields:

wT
itz

g
t = (α− I)xit + (δ − I)

∞∑
s=1

δs−1[αxit−s + εit−s] + εit

Now, suppose εit can be decomposed according to: εit = γrit + νit, where rit is a vector of

observables that impact the food bank i’s winnings (all of which must be independent of xi). These

can be considered non-stock factors that impact winnings. For example, I focus on the total supply

in period t, by storage type, the number of other food banks who placed a bid on a lot of each storage

type, as well as the minimum distance between food bank i and a lot of each storage type in period

t. Importantly I require that E[ris⊗νit] = 0. As above, I expect νit to be lumpy, non-normal, and
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with possibly non-zero mean. We can then re-write the equilibrium winnings process as:

wT
itz

g
t = γrit + (δ − I)

∞∑
s=1

δs−1γrit−s + (δ − I)

∞∑
s=1

δs−1[αxit−1 + νit−s] + (α− I)xit + νit

Importantly, this is a regression equation that could, hypothetically, be consistently estimated.

However, there are easier ways to consider a test of stationarity. Consider the simple null hypothesis

that δ = I, so that the equilibrium stock process is a random walk. Under this null hypothesis, the

equilibrium winnings process does not respond to the previous period’s evening state. Therefore,

consider the following regression specification:

wT
itz

g
t = β0 + β1rit + β2rit−1 + ϑit (8)

Under this null hypothesis β2 = 0. This test is essentially an Anderson-Rubin test. The intuition is

that we consider whether winnings respond to lagged non-stock factors. These lagged factors likely

impact lagged winnings. If they are found to impact present winnings this suggests that current

winnings responds to the lagged stock. If current winnings do not depend on the lagged stock,

this suggest the food bank ignores their previous stocks, so the equilibrium stock process follows a

random walk.

Results for this test are presented in Appendix C.3. As well as presenting aggregated results,

assuming every food bank has the same δ, I consider disaggregated results. However in this case I

have significantly less power. Broadly, however, I find strong evidence of stationarity.

C.3 Results

Figure 17 presents results from this regression. I run each regression separately for each storage

method, focusing on food banks that won at least 100 lots. I also include a second lag of rt, as this

allows us to interpret the coefficients on rt−1.57 I include factors for all storage methods in every

regression, but only present results for the matching storage types, since these are expected to be

the most useful. I also include a dummy variable (and its lags) for whether no lots of a particular

type were auctioned on a particular day.

There is evidence of stationarity, given that we can reject the null hypothesis δ = I at the 1%

significance level (p < 0.001). Most of the coefficients have the expected signs. Non-lagged factors

are almost all statistically significant, with winnings increasing in the amount of food allocated, de-

creasing in the minimum distance between the bidder and lots, and decreasing in the number of rival

bidders bidding on lots of that type. Coefficients on the lagged factors generally have the opposite

signs, as we expect. Lagged distance is never statistically significant, even though contemporaneous

distance is, while lagged pounds and rival bidders are generally significant. Comparing coefficients

across lagged and unlagged variables we can extract δ. Assume zero-off diagonal elements, then

diagonal elements are estimated to be in the region of 0.8. This uses the formula δ̂ = 1− β̂1

β̂2
.

57Conditional on rt−2 it is reasonable that rt−1 and rt are uncorrelated with rt−s for s ≥ 3, the
omitted variables.
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I also consider results for individual food banks. I run a specification as above allowing for

individual food bank coefficients. When considering winnings for storage type l I only include

factors and lagged factors for storage type l. I can reject the null-hypothoses that δ = I for 25%

of analysed food banks. These are predominantly the large food banks observed regularly bidding

and winning on the Choice System. For many food banks the tests are under powered, with even

58% of the unlagged factors being statistically insignificant at 5% level of significance. This is most

likely due to having only a small amount of variation in winnings, given that many food banks do

not win very frequently. Interestingly Distance and Lagged Distance are much more likely to be

statistically significant when I run the individual analysis.

Figure 17: Results: Stationarity

Non-Food Dried Tinned/Bottled Refrigerated Fresh

Total Pounds 0.018 0.023 0.017 0.020 0.018
(0.004) (0.005) (0.004) (0.006) (0.005)

Lagged Pounds -0.001 -0.003 -0.001 -0.004 -0.001
(0.001) (0.001) (0.001) (0.003) (0.001)

Minimum Distance -0.856 -1.528 -0.884 -0.480 -0.288
(0.285) (0.450) (0.264) (0.751) (0.107)

Lagged Distance 0.171 -0.024 0.187 0.116 0.030
(0.118) (0.160) (0.107) (0.320) (0.074)

Active Bidders -53.638 -71.039 -28.601 -593.755 -43.187
(19.999) (29.534) (22.572) (189.673) (18.443)

Lagged Bidders 14.254 34.077 15.683 84.825 7.250
(6.940) (15.380) (7.975) (61.444) (4.552)

FB Fixed Effects X X X X X
2nd Lags X X X X X
Note: Standard Errors clustered within food bank and period.

Regression for storage method l includes regressors for all other storage methods also.

C.4 Covariance Stationarity

I now demonstrate that this assumption about the equilibrium stock process yields two sets of

intuitive information about parameters µi and Σi.

C.4.1 µi

Take an expectation of the equilibrium winnings equation for:

E[wT
itz

g
t ] = (α− I)µi + (δ − I)

∞∑
s=1

δs−1[αµi + E[ε]] + E[ε]

Recognise that
∑∞
s=1 δ

s−1 = (I − δ)−1, so that we are left with:

E[wT
itz

g
t ] = −µi
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Therefore, on average winnings offset net local donation. I use this constraint to build prior means

for µ. I do not impose this relationship on account of the difficulty of efficiently estimating E[wT
itz

g
t ]

in the presence of auto-correlation, meaning my estimates are likely to be imprecise.

C.4.2 Σi

Take the variance of the equilibrium winnings equation, recognising that we assumed x is uncorre-

lated over time, and uncorrelated with ε:

V ar(wT
itz

g
t ) = (α− I)Σi(α− I) + (δ− I)[

∞∑
s=1

δs−1αΣiαδ
s−1](δ− I) +V ar(εt + (δ− I)[

∞∑
s=1

δs−1εt−1)

V ar(εt+(δ− I)[
∑∞
s=1 δ

s−1εt−1) is evidently positive definite. Meanwhile, the infinite geometric

series does not have a simple form. To simplify matters, focus on the case where δ, α, and Σi are

diagonal matrices. This is relevant since I impose that Σi is diagonal in the empirical model. In

this case, applying the rule for infinite geometric series, with δl < 1 I can write:

V ar(wT
itz

g
lt) = (αl − 1)2Σlli +

(δl − 1)2

1− δ2
l

α2Σlli + V ar(εlt + (δl − 1)[

∞∑
s=1

δs−1
l εlt−1)

Since α ∈ [0, 1], the first part of this expression varies between Σlli and [(1 − δl)/2]Σlli , when

α = (1 + δl)/2. Therefore, since V ar(εlt + (δl − 1)[
∑∞
s=1 δ

s−1
l εlt−1) > 0, I can write:

V ar(wT
itz

g
lt) >

1− δl
2

Σlli

Therefore, I can bound Σlli , conditional on δ. I consider two benchmark cases, δl = 0, so

that, on average each period, winnings totally adapt to changes in previous stocks. This implies

Σlli < 2V ar(wT
itz

g
lt). I also consider δ = 49/50, so that winnings do not strongly react to previous

stocks. This implies Σlli < 100V ar(wT
itz

g
lt).

I use the δ = 49/50 case for a hard upper bound on Σlli , under the prior that δ < 49/50. I use

the δ = 0 case for what is essentially the prior mean of Σlli , albeit with a very low prior weight,

given by the degrees of freedom in the Normal-inverse-Gamma distribution. Full details of how I

build these weakly informative priors is given in Appendix H.

D Inverse Bid System

In this Appendix I demonstrate that, in addition to the transition equation given in Assumption

2, a food bank’s optimisation problem yields the Observation and Censoring equations given in

Equation 4. I focus on the case for quadratic parametrisation of k. The general case is presented in

(Altmann, 2022).
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D.1 Set-up

Imposing the parametrisation given in section 5.3, and conditional on d∗i , the bidder’s maximisation

problem is given by:

max
b

{∑
l

Γl(bl, d
∗
l ; s)(υl − bl) +

∑
a

Pa(b,d∗; s)[Φsahi + sagTi Ψsagi ] s.t. bl ≥ Rl

}

D.2 Simplification

The maximand can be simplified for:∑
l

Γl(bl, d
∗
l ; s)(υl − bl + Φzhl + 2zgTl Ψsgi + zgTl Ψzgl +

∑
m 6=l

Γm(bm, d
∗
m; s)zgTl Ψzgm) + Φshi + sgTi ΨsgTi

I now prove this. First, recognise that
∑
a Pa(b,d; s) = 1, since we sum over mutually exclusive

and exhaustive events. This allows me to write, for example,
∑
a Pa(b,d; s)sgTi Ψsgi = sgTi Ψsgi .

Second, recognise that sai = si + zwa
i , where wa

i is the L × 1 vector with entry l equal to 1 if

i wins lot l in combinatorial outcome a and zero otherwise. The matrix z just gives the size and

composition of lots. Exploiting
∑
a Pa = 1, re-write the maximand as:

∑
l

Γl(bl, d
∗
l ; s)(υl − bl) +

∑
a

Pa(b,d∗; s)[Φsahi + sagTi Ψsagi ]

=
∑
l

Γl(bl, d
∗
l ; s)(υl − bl) + Φshi + sgTi Ψsgi +

∑
a

Pa(b,d∗; s)[Φzhwa
i + sagTi Ψsagi − sgTi Ψsgi ]

=
∑
l

Γl(bl, d
∗
l ; s)(υl − bl) + Φshi + sgTi ΨsgTi +

∑
a

Pa(b,d∗; s)[Φzhwa
i + waT

i zgTΨ(zgwa
i + 2sgi )]

Where the final line follows from quadraticness: sagTi Ψsagi = (si + zwa
i )TΨ(si + zwa

i ) and so

sagTi Ψsagi − sgTi Ψsgi = waT
i zgTΨ(zgwa

i + 2sgi ).

Finally, recognise that
∑
a Pa(b,d; s)sai = si +

∑
l Γl(bl, dl; s)zl. This arises because stocks are

additive in winnings.58 This ensures that:

=
∑
l

Γl(bl, d
∗
l ; s)(υl − bl + Φzhl + 2zgTl Ψsgi ) + Φshi + sgTi ΨsgTi +

∑
a

Pa(b,d∗; s)waT
i zgTΨzgwa

i

=
∑
l

Γl(bl, d
∗
l ; s)(υl−bl+Φzhl +2zgTl Ψsgi +zgTl Ψzgl +

∑
m6=l

Γm(bm, d
∗
m; s)zgTl Ψzgm)+Φshi +sgTi ΨsgTi

Where the final line follows from two points: (1) that (zgwa
i )TΨ(zgwa

i ) =
∑
l

∑
m(wailz

g
l )
TΨ(waimzgm),

which arises from quadraticness. Because this object only depends on pairs of winnings, we can

marginalise out the probability of receiving a particular pair, so that:
∑
a Pa(b,d; s)(zgwa

i )TΨzgwa
i =

58This result can be seen by focusing on the expectation of waT
i zl for one particular l. As we

sum across all the combinations in which they win lot l, the sum of these probabilities is just Γl,
the marginal probability they win lot l.
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∑
l

∑
m Prob(win l and m|b,d; s)(zgl )

TΨ(zgm). (2), imposing part (iv) of Assumption 4:

Prob(win l and m|b,d; s) = Γl(bl, dl; s)Γm(bm, dm; s) for m 6= l, and Γl(bl, dl; s) otherwise.

D.3 First Order Conditions, conditional on entry

Written out in it’s full simplified form, the lagrangian for this problem is given by:

L(b|d∗, s,υ) =
∑
l

Γl(bl, d
∗
l ; s)(υl−bl+Φzhl +2zgTl Ψsgi+

∑
m

Γm(bm, d
∗
m; s)zgTl Ψzgm)+Φshi +sgTi ΨsgTi

−
∑
l

Λl(Rl − bl)

Where Λl give the lagrangian multipliers. Necessary first order conditions are given by:

0 = ∇lΓl(b∗l , d∗l ; s)(υl−b∗l +Φzhl +zgTl Ψzgl +2zgTl Ψsgi +2
∑
m 6=l

Γm(b∗m, d
∗
m; s)zgTl Ψzgm)−Γl(b

∗
l , d
∗
l ; s)+Λ∗l

Which rearranges for:

b∗l +
Γl(b

∗
l , d
∗
l ; s)

∇bΓl(b∗l , d∗l ; s)
− Λ∗l = Φzhl + zgTl Ψ(zgl + 2sgi + 2

∑
m 6=l

Γm(b∗m, d
∗
m; s)zgl ) + υl = yl

Let y∗l = b∗l +
Γl(b

∗
l ,d
∗
l ;s)

∇bΓl(b∗l ,d
∗
l ;s) − Λ∗l . When we observe b∗l > Rl, we can infer Λ∗l = 0, so that

y∗l = b∗l +
Γl(b

∗
l ,d
∗
l ;s)

∇bΓl(b∗l ,d
∗
l ;s) = yl. In this case, the bidder is not constrained.

D.4 Reservation Price Bidding

When we observe b∗l = Rl, the First Order Conditions break down, since as made clear in Section

5.2, beliefs are non-differentiable at the reservation price due to the non-negligible probability of

ties. Therefore, consider the bidder’s decision to bid at the reservation price, bidding vector b∗,

compared to just above the reservation price at Rl + 1 playing vector b+. Elements m 6= l of these
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vectors will otherwise be equal. This implies that:

∑
l

Γl(b
∗
l , d
∗
l ; s)(υl − b∗l + Φzhl + 2zgTl Ψsgi +

∑
m

Γm(b∗m, d
∗
m; s)zgTl Ψzgm)

≥
∑
l

Γl(b
+
l , d

∗
l ; s)(υl − b+l + Φzhl + 2zgTl Ψsgi +

∑
m

Γm(b+m, d
∗
m; s)zgTl Ψzgm)

Therefore

Γl(Rl, d
∗
l ; s)(υl −Rl + Φzhl + zgTl Ψ(zgl + 2sgi + 2

∑
m

Γm(b∗m, d
∗
m; s)zgm))

≥ Γl(Rl + 1, d∗l ; s)(υl −Rl − 1 + Φzhl + zgTl Ψ(zgl + 2sgi + 2
∑
m

Γm(b∗m, d
∗
m; s)zgm))

Therefore

[Γl(Rl+1, d∗l ; s)−Γl(Rl, d
∗
l ; s)](υl−Rl+Φzhl +zgTl Ψ(zgl +2sgi+2

∑
m

Γm(b∗m, d
∗
m; s)zgm)) ≤ Γl(Rl+1, d∗l ; s)

yl = Φzhl +2zgTl Ψsgi+zgTl Ψ(zgl +2sgi+2
∑
m

Γm(b∗m, d
∗
m; s)zgm)+υl ≤ Rl+

Γl(Rl + 1, d∗l ; s)

Γl(Rl + 1, d∗l ; s)− Γl(Rl, d∗l ; s)
= y∗l

Therefore, y∗l ≥ yl

D.4.1 Bidding Rl vs Not Bidding

At the margin, the bidder must weakly prefer to enter and bid the reservation price, playing bid-

ding/entry vector b∗,d∗, than to not enter at all, playing bidding/entry vector b−,d−. These

vectors are identical apart from for lot l. This implies:

∑
l

Γl(b
∗
l , d
∗
l ; s)(υl − b∗l + Φzhl + 2zgTl Ψsgi +

∑
m

Γm(b∗m, d
∗
m; s)zgTl Ψzgm)

≥
∑
l

Γl(b
−
l , d

−
l ; s)(υl − b−l + Φzhl + 2zgTl Ψsgi +

∑
m

Γm(b−m, d
−
m; s)zgTl Ψzgm)

Therefore

Γl(Rl, d
∗
l ; s)(υl −Rl + Φzhl + zgTl Ψ(zgl + 2sgi + 2

∑
m

Γm(b∗m, d
∗
m; s)zgm)) ≥ 0

Therefore

yl = Φzhl + 2zgTl Ψsgi + zgTl Ψ(zgl + 2sgi + 2
∑
m

Γm(b∗m, d
∗
m; s)zgm) + υl ≥ Rl

Therefore Rl ≤ yl ≤ y∗l

D.5 Entry Decisions

If a food bank chooses not to enter the auction for lot l, then at the margin they must weakly prefer

to not enter the auction, than to enter and bid the reservation price. This is just the complement
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of the previous inequality, allowing us to infer that d∗l = 0 implies yl ≤ Rl.59.

D.6 Monotonicity

I now prove that the inverse bid system is strictly monotonic for bl > Rl. This broadly extends

equivalent results from Altmann (2022). That is, I show that the Jacobian matrix of the inverse

bid system, differentiated with respect to bids, is positive definite. I drop the dependence on t

for notational convenience. The proof involves first finding the Hessian matrix for the bidder’s

maximisation problem. This matrix being negative definite is a necessary condition of optimising

behaviour. I then differentiate the inverse bid system, before inserting the hessian matrix, and

recognising that the resulting matrix must be positive definite.

Proof: 1. The Second order necessary conditions for maximising behaviour are given by the

matrix with entry l,m:

∂L(b|d, s,υ)

∂bl∂bm
=


∇2
l Γl(b

∗
l , d
∗
l ; s)(υl − b∗l + Φzhl + zgTl Ψ(zgl + sgi + 2

∑
n 6=l Γn(b∗n, d

∗
n; s)zgn)

−2∇lΓl(b∗l , d∗l ; s) if l = m

2∇lΓl(b∗l , d∗l ; s)∇mΓm(b∗m, d
∗
m; s)zgTl Ψzgm if l 6= m

I focus on the region for which the constraint does not bind. Therefore a necessary

condition for optimising behaviour is that this matrix is negative definite.

2. The first order conditions can be written as:

(υl− b∗l +Φzhl +zgTl Ψzgl +2zgTl Ψsgi +2
∑
m6=l

Γm(b∗m, d
∗
m; s)zgTl Ψzgm) =

Γl(b
∗
l , d
∗
l ; s)− Λ∗l

∇lΓl(b∗l , d∗l ; s)

Recognise that we can substitute this into the hessian for:

∇2
l,mL(b|d, s,υ) =


∇2
l Γl(b

∗
l ,d
∗
l ;s)[Γl(b

∗
l ,d
∗
l ;s)−Λ∗l ]

∇lΓl(b∗l ,d
∗
l ;s) − 2∇lΓl(b∗l , d∗l ; s) if l = m

2∇lΓl(b∗l , d∗l ; s)∇mΓm(b∗m, d
∗
m; s)zgTl Ψzgm if l 6= m

3. The inverse bid system can be written as:

ξl(b,d; s) = bl +
Γl(bl, dl; s)

∇lΓl(bl, dl; s)
− Φzhl − zgTl Ψ(zgl + 2sg + 2

∑
m6=l

Γm(bm, dm)zgm) ≥ υl

4. Differentiate this with respect to b for:

∂ξl(b,d; s)

∂bm
=

2− Γl(bl,dl;s)∇2
l Γl(bl,dl;s)

∇lΓl(bl,dl;s)2

−2∇mΓm(bm, dm)zgTl Ψzgm

59Furthermore, negative definiteness of Ψ implies that if they prefer to not bid than enter and
bid the reservation price, they also cannot prefer to bid strictly above the reservation price
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5. Recognise that for bl > Rl, so that Λl = 0, this is just the negative of the hessian divided

by ∇lΓl(bl, dl; s). Therefore, since ∇lΓl(bl, dl; s) is strictly positive, the Jacobian of the

inverse bid system must be positive definite.

E Discriminatory Auctions

In this Appendix I discuss how the discriminatory auctions of homogenous lots are take into account.

In Appendix E.1 I explain the rules of the discriminatory auctions. In Appendix E.2 I derive

the Inverse Bid System in the presence of discriminatory auctions, presenting a generalisation of

Appendix D. In Appendix E.3 I discuss how I use the inverse bid system in estimation.

E.1 Framework

In a discriminatory auction of R homogenous lots, food banks place as many bids as they like, and

lots are allocated to the R highest bidders. Bidders pay they bids. Lots are then allocated to the R

highest bidders who pay their bids, if at least R bids were placed.

7% of unique auctions that occur contain more than one homogenous good, and are auctioned

in discriminatory fashion. Of all the lots allocated, 21% of lots are auctioned with at least one

additional identical load. The vast majority of lots sold at the reservation price are lots from

discriminatory auctions with a large number of homogenous loads being auctioned in this manner

(the remainder are fresh loads). Food banks recognise that the lowest winning bid is likely to be

very low. Loads allocated in this manner are always homogenous and come from the same source.60

Figure 18 panel (A) shows a histogram of the number of loads included in each unique auction,

conditional on at least two loads. As not every load may be sold on a particular date, Panel (B)

shows the number of homogenous loads for each auction × date, conditional on at least two loads.

E.2 Adjusted Inverse Bid System

The only difference between simultaneous and discriminatory first-price auctions is that when the

bidder wins on their rth lowest bid on lot l, they must also win on all higher bids. Write the rth

bid on auction l as blr. Bids are ascending, such that blr ≤ blr+1, up to r = Rl the total number

of loads contained in the lot. Food bank i’s belief about the probability they win on their rth bid

on lot l is given by Γl(blr), suppressing the entry decision and state variables for ease of notation.

Their belief they win on bids r through to R, but no lower, is given by Γl(blr)− Γl(blr−1). This is

the probability the lowest rival winning bid is between blr and blr−1.

Because lots are homogenous, I treat the lot specific value υil as constant across the loads in

auction l. Making use of the assumed parametrisation, the expected payoff is given by:

60However some homogenous lots, that are all donated by the same donors, are auctioned using
simultaneous auctions. I do not analyse the determinants of this decision.
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Figure 18: Distribution of Homogenous Loads

Note: These plots show histograms of the number of homogenous loads included in each auction,

conditional on at least two homogenous loads. Panel (A) shows the number of loads for each unique

auction. Panel (B) shows the number of loads for each date × auction, recognising that not every

load is sold right away. More than 50 loads are grouped into the 50 category. This includes one

auction with 181 loads, and 9 other auctions with between 60 and 80 Loads.

π(b,d) =

L∑
l

Rl∑
r

Γl(blr, dlr)υl − blr + Φzhl + zgTl Ψ[zgl + 2sgt ])

+

L∑
l

Rl∑
r

Γl(blr, dlr)z
gT
l Ψ[(Rl − r)zgl +

∑
m 6=l

Rm∑
n

Γm(bmn, dmn)zgm] +

r−1∑
n=1

Γl(bln, dln)zgTl Ψzgl

The first line gives the lot-specific component of the pay-off, while the second line gives the combi-

natorial component - how the pay-off varies with winnings from other auctions. In the simultaneous

only case this line is given by
∑L
l Γl(bl, dl)z

gT
l Ψ[

∑
m6=l Γm(bm, dm)zgm] only. Recognise that if they

win with bid blr, then they win the (Rl − r) higher lots with certainty. This is why the (Rl − r)zgl
term does not have a probability multiplier. Likewise, with probability Γl(bln, dln) they also win on

bid blr (for n < r). So, in expectation, they also gain this Γl(bln, dln)zgTl Ψzgl combinatorial term.
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Conditional on dlr = 1, first order conditions with respect to bid blr are given by:

Γl(blr, dlr) = ∇blrΓl(blr, dlr)(υl − blr + Φzhl + zgTl Ψ[zgl + 2sgt ])

+∇blrΓl(blr, dlr)z
gT
l Ψ[(Rl − r)zgl +

∑
m6=l

Rm∑
n

Γm(bmn, dmn)zgm +

r−1∑
n

Γl(bln, dln)zgl ]

+ zgTΨ∇blrΓl(blr, dlr)[
∑
m 6=l

Rm∑
n

Γm(bmn, dmn)zgm +

Rl∑
r+1

zgl ]

The inverse bid system is given by:

ξlr(b; k) = blr +
Γl(blr, dlr)

∇blrΓl(blr, dlr)
− Φzhl − zgTl Ψ[zgl + 2sgt ]

− zgTl Ψ[2(Rl − r)zgl + 2
∑
m 6=l

Rm∑
n

Γm(bmn, dmn)zgm +

r−1∑
n

Γl(bln, dln)zgl ]

Next, we consider the decision to enter and bid the reservation price, rather than bid just above

it. Importantly, if blr = R + 1 then all lower bids must be ether the same, at the reservation price,

or not entered. Setting the utility at the reservation price greater than or equal to utility just above

the reservation price we obtain the following upper bound on ξlr:

ξlr(b; k) ≤ blr +
Γl(R+ 1, 1)

Γl(R+ 1, 1)− Γl(R, 1)
− Φzhl − zgTl Ψ[zgl + 2sgt ]

− zgTl Ψ[2(Rl − r)zgl + 2
∑
m 6=l

Rm∑
n

Γm(bmn, dmn)zgm +

r−1∑
n

Γl(bln, dln)zgl ]

Next, consider the decision to enter and bid the reservation price, versus not bidding at all. We

obtain the following lower bound for ξlr:

ξlr(b; k) ≥ blr−Φzhl −zgTl Ψ[zgl +2sgt+2(Rl−r)zgl +2
∑
m 6=l

Rm∑
n

Γm(bmn, dmn)zgm+

r−1∑
n

Γl(bln, dln)zgl ]

As in Appendix D, the decision not to enter then yields the same upper bound as this lower

bound. There is a clear similarity between this system of equations and those presented previously.

E.3 Computation

E.3.1 First Stage

Food bank i wins lot l, load r, with the probability that their bid exceeds the lowest winning bid on

that lot. Therefore it is their belief about the distribution of the lowest winning bid that matters.

When fewer food banks place bids than loads are being auctioned, this is just the reservation price.
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Therefore, when estimating beliefs I ignore all higher winning bids.

E.3.2 Second Stage

The difficulty in the second stage is that the lot specific idiosyncratic pay-off is assumed to be

perfectly correlated within a discriminatory auction. Allowing these objects to vary, even if highly

correlated, does not make sense given loads are perfectly homogenous. By definition of the homoge-

nous lots, there can be no unobserved variation in lot characteristics across loads.

When performing the data augmentation step in the second stage of the procedure I treat

discriminatory auctions correctly. That is, I correctly sample censored bids from their posterior

distribution and sample states from their conditional posterior. However, in the Gibbs Sampling

step I only use information from the highest bid (which may also be censored). If the idiosyncratic

terms are perfectly correlated then I do not gain any additional information by using lower bids.61

Finally, when considering model fit by simulating the Choice System, I do simulate these auctions

(albeit limiting food banks to only be able to place up to 5 bids on a single auction). Therefore if

my simplification does lead to inaccuracy or bias, this should become evident.

E.3.3 Third Stage

Finally, in the third step I treat these auctions properly in how I evaluate the ex-ante continuation

value. The derivation presented in Appendix G extends easily to allow for the discriminatory case,

and only requires summing over the probability of these combinatorial wins.

F Semi-parametric Identification

In this Appendix I prove that the model is semi-parametrically point-identified. I prove that it is

point-identified under the parametric restriction on the pseudo-static payoff given by Equation 3.

This restriction allows me to make use of the Inverse Bid System derived in Appendix D.

I make two additional simplifying assumption: I assume that reservation prices do not bind.

Binding reservation prices ensure the first order conditions do not hold with equality. However, as

discussed in Altmann (2022), reservation prices are not a first-order issue, and do not substantially

alter the problem. In the same way that a censored regression model, which requires a Tobit or

MAD specification, does not substantially alter the problem of identifying the regression coefficients.

The key intuition garnered from this simplified approach extends to the case with reservation prices.

61In practice specification error will means I cannot rationalise the model with identical lot specific
pay-offs. I could treat them as correlated, and estimate a correlation parameter, but in practice I
will gain very little additional information from doing so. First, if they do not place bids at all in a
particular auction I gain no additional information from considering additional bids. If they place
one bid, but not a second, some information can be gained by considering why they didn’t place
this second bid. However, even given specification error we expect a very high degree of correlation,
meaning I do not gain a large amount of information beyond that contained in the first bid.
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I also assume that zgt has full rank, ensuring the generalised (left) inverse exists. This ensures

that information about each dimension of the stock propagates through their bidding behaviour,

so that we can separately identify the effects of each stock dimension. In practice this assumption

generally holds, except in the case where one type of good is not auctioned one period. Strictly

speaking, identification only requires 3 observations with full rank in a row.

While the argument only requires T ≥ 3 for point identification, asymptotics require T → inf

because additional observations help us further pin down the identified objects objects. I treat Γ

as trivially identified, because it is identified from observations of winning bids. I do not explicitly

consider identification of the λi parameters, which give the marginal value of wealth for each bidder.

These parameters are identified by comparing bidding behaviour across bidders, and requires the

normalising assumption that the variance of lot-specific values is constant across bidders.

The identification argument proceeds as follows: In Appendix F.1 I detail sufficient assumptions

model primitives for semi-parametric point identification. In Appendix F.2 I show that the Obser-

vation Equation and Transition Equations can be re-written as a ‘Random-walk Linear State Space’

model. In Appendix F.3 I show that under these assumptions the Random-walk Linear State Space

model is identified, proving that k, F x, and F υ are point identified. Finally, in Appendix F.4 I prove

that conditional on point identification of k, F x, and F υ, j is point identified.

F.1 Assumptions on the Pseudo-static Primitives

Identification of k, F x, and F υ requires assumptions 1 - 4, however I do not require that either υit

or xit are normally distributed and strictly exogenous. Instead, I require the following (dropping

the i subscript for notational clarity):

Assumption 5. i) E[υs|zglt, zhlt, dtl] = 0 ∀l,m, t, s
ii) E[xs|zglt, zhlt, dtl] = 0 ∀l,m, t, s
iii) E[υs|wT

t zgt ] = 0 ∀t < s

iiii) E[xs|wT
t zgt ] = 0 ∀t < s

v) rank(E[(wT
t zgt )⊗ (zgt , z

h
t ,dt)]) = 5 ∀t

Where dtl gives the distance between the bidder and lot l. Essentially, I have de-meaned the

lot-specific value υlt. The first two parts of the assumption ensures that the unobservables are

mean independent of any of the lot-specific observables, a relatively standard assumption. Parts

iii) and iiii) ensure that future unobservables are mean independent of past winnings. However, it

does allow present and future winnings to depend on the un-observables. For example, the higher

is υilt, or the lower is xit the more aggressively they bid, and the more likely they are to win the

lot. Similarly, part v) actually necessitates this, essentially stating that winnings must be correlated

with observables. This assumption is validated by Figure 6.

76



F.2 Random Walk Linear State Space form

In Appendix F.3 I demonstrate the identification of parameters in a Random Walk Linear State

Space model. Therefore I first need to show that the model as presented above can be written in

Random Walk Linear State Space form. I then show that the assumptions used in Appendix F.3

follow from the Assumption 5. I then briefly discuss the intuition underlying this identification

argument, and how it maps to the intuition presented in Section 4.4.

A Random Walk Linear State Space model is written in the form: yt = Ψst + xtγ + υt. Im-

portantly, yt is affine in the unobserved state st. The observation and transition equations of my

model are given by:

blt +
Γl(blt)

∇bΓl(blt)
= Φzhlt + αdlt + zgTlt Ψ(zglt + 2st + 2

∑
m 6=l

Γm(bmt)zmt) + υlt

&

st = st−1 + wt−1 + µ+ xt

Stack the observation equation over l, writing:
b1t + Γ1(b1t)

∇bΓ1(b1t)

...

bLt + ΓL(bLt)
∇bΓL(bLt)

 = zht ΦT + dTt α+ zgtΨst +


zgT1t Ψ(zg1t + 2

∑
m6=1 Γm(bmt)zmt)
...

zgTLtΨ(zgLt + 2
∑
m6=L Γm(bmt)zmt)

+ υt

Unfortunately the zgTlt Ψ(zglt+2
∑
m 6=l Γm(bmt)zmt) terms do not have a simple vector form. However,

we can write them in a ‘linear-in-parameters’ form.62 Therefore, I write zgTlt Ψ(zglt+2
∑
m 6=l Γm(bmt)zmt) =

altγ, where γ is a 25 × 1 vector with entry γ5(p−1)+q = Ψp,q, and alt is a 1 × 25 row vector with

entry a5(p−1)+q,tl = zgp,tl(z
g
q,tl +

∑
m 6=l Γm(bmt)z

g
q,tm)

Next, left multiply this system of equations by the generalised left inverse (zgt )
−1:

(zgt )
−1[bt + (∇bΓ(bt))

−1Γ(b)] = Ψst + (zgt )
−1zht ΦT + (zgt )

−1dTt α+ (zgt )
−1atγ + (zgt )

−1υt

This equation, coupled with the transition equation, constitute a Random Walk Linear State Space

model. Essentially, Instead of considering an equation for each lot, I have reduced the dimensionality

to focusing on only one equation for each dimension of the state variable. However, just like the

original observation equation, this equation is also endogenous, E[an,tυlt] 6= 0 due to possible

correlation between Γm(bitm) and υlt. However, we have an obvious instrument for a, given by ãt

where ã5(p−1)+q,tl = zgp,tlz
g
q,tl. The rank condition for this instrument is trivial. Now I show that

the Assumption 6 follows from Assumption 5.

62This is just like how the regression yi = c + bxi + ax2
i + εi can be written as yi =(

1 xi
)(c b

2
b
2 a

)(
1
xi

)
+ εi or yi =

(
1 xi x2

i

)cb
a

+ εi.
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Proposition 2. Let qnt denote row n of (zgt )
−1. Assumption 5 implies:

i) E[qnt(z
h
t ,d

T
t )(υTs )qTms] = 0 ∀n,m, t, s

ii) E[qnt(z
h
t ,d

T
t )xs] = 0 ∀n, t, s

iii) E[wT
t zt(υ

T
s )qTms] = 0 ∀m, t < s

iiii) E[wT
t ztx

T
s ] = 0 ∀t < s

v) rank(E[(wT
t zgt )⊗ (zgt , z

h
t ,dt)]) = 5 ∀t

Results iiii) and v) are as they were in Assumption 5. The remaining results follow by applying

the Law of Iterated Expectations, before applying the relevant part of Assumption 5. The argument

in Appendix F.3 requires that (zgtl, z
h
tl, dtl) are not perfectly collinear, and vary over time.

The identification proof in the next section workers by first differencing both the augmented

observation question, and minusing st−1 from the transition equation. We then insert ∆st into

the observation equation, giving us an endogenous regression equation, with endogeneity arising

through at, but also through the correlation between wT
t−1z

g
t−1 and υt−1.

Identification of Ψ is then driven by (the plausibly exogenous component of) variation in both

wT
t−1z

g
t−1 and at, just as in a standard instrumental variable setting. Identification of µ then arises,

conditional on Ψ, from the average change in observed bids over time. Finally, Σ is identified by

considering the covariance of bids over time, conditional on winnings, through a standard variance

decomposition.

F.3 Identification of the RWLSS model

In this subsection I prove that the Random Walk State Space model, with state control variables

and endogenous regressors, is point identified. The non-random walk case is a simple extension of

this argument. The model can be written as follows:

N×1︷︸︸︷
yt = Ψst +

exog︷︸︸︷
wtβ+

endog︷︸︸︷
xtγ +εt︸ ︷︷ ︸

Observation

&

S×1︷︸︸︷
st = st−1 +

control︷︸︸︷
ct +

constant︷︸︸︷
µ + υt︸ ︷︷ ︸

Transition

&

M×1︷︸︸︷
xt = Π

Z×1︷︸︸︷
zt +ϑt︸ ︷︷ ︸

Instruments

(9)

Without loss of generality I require that Ψ has full rank. V ar(υt) = Σ is also a parameter of

interest. Impose the following:

Assumption 6. i) E[wt(εns, υms)] = 0, E[zt(εns, υms)] = 0 ∀n,m, t, s
ii) E[ct(εns, υms)] = 0 ∀n,m, t ≤ s
iii) rank(Π) = M, rank(E[ct(wnt−1, z

T
t )]) = S rank(E[∆wT

nt∆wnt]) = dim(wnt)

Importantly, this allows E[ct(εnt−1, υmt−1)] 6= 0.

Proposition 3. Identification of the Random Walk State Space model

Under Assumption 6, Ψ, β, γ,µ are point identified.
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Proof of this proposition simply involves an argument based on our moment conditions.

Proof: 1. Re-arrange the model equations for:

yt −wtβ − xtγ − εt = Ψst & Ψst = Ψst−1 + Ψct + Ψµ+ Ψυt

2. Substitute the Observation equation into the transition equation, and re-arrange this

for our estimating equation:

∆yt = Ψµ+ Ψct + ∆wtβ + ∆xtγ + ∆εt + Ψυt

Write µ̄ = Ψµ, where evidently if both Ψ and µ̄ are point identified, then so is µ.

3. Focus on row n of this equation. Write Ψn as row n of the matrix Ψ. Exploiting

that the transpose of a scalar is just itself, this equation can be re-written as: ∆ynt =

µ̄n + cTt ΨT
n + ∆wntβ + ∆xntγ + ∆εnt + Ψnυt

4. Identification then focuses on the following moment condition, which follows from

Assumption 6: E[(1,wnt,∆wnt,∆zTt )T (∆εnt+Ψnυt)] = 0. We essentially use z as an

instrument for x, and lagged w as an instrument for c. Substitute in the estimating

equation for:

E[(1,wnt−1,∆wnt,∆znt)
T (∆ynt − µ̄n − cTt ΨT

n −∆wntβ −∆xntγ)] = 0

5. Rearrange this equation for:

E[


1

wT
nt−1

∆wT
nt

∆zt

∆ynt] = E[


1

wT
nt−1

∆wT
nt

∆zt

 (1, cTt ,∆wnt,∆xnt)]


µ̄n

ΨT
n

β

γ

 = B


µ̄n

ΨT
n

β

γ


Part iiii) of Assumption 6 ensures the matrix B has full rank. Identification of the

coefficient parameters then follows as, given B has full rank, there exists a unique set

of coefficients for which this moment condition holds.

6. This argument holds for each of the N rows of yt.

To identify Σ we need some additional assumptions about the auto-correlation of the error terms.

A simplest additional assumption as follows:

Assumption 7. i) E[εntεns] = 0 ∀n, t 6= s

ii) E[υntυns] = 0 ∀n, t 6= s

iii) E[υmtεns] = 0 ∀n,m, t, s

Under this assumption, Σ is then also identified:
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Proof: 1. As shown previously, the residual ∆εnt + Ψnυt is point-identified.

2. The variance of this residual is given by 2var(εnt) + ΨnΣΨT
n

3. The lag-one auto-covariance is −var(εnt)

4. Therefore we can back out Σ from these two objects.

F.4 Identification of j, given k, F x, F υ,Γ, and β

Proposition 4. Conditional on k, F x, F υ, and Γ, being point identified, j is also point identified.

This proposition demonstrates that identification of the value function, and hence continuation

value, follows from identification of the primitives of the pseudo-static model. This is similar to the

philosophy underlying the third stage estimation procedure discussed in the text.

Proof of this proposition involves first demonstrating that the value function is identified, which

rests on the identification of k and Γ. I then show that the ex-ante value function is identified,

which follows because F υ is identified. Identification of the continuation value follows from the

identification of F x. Finally, given β, we can back j out from the definition of k. In practice, β is

not identified, so must be fixed by the researcher.

Proof: 1. The Value Function can be written as:

W (υ, s) = max
b,d

{∑
l

Γl(bl, dl; s)(υl − bl) +
∑
a

Pa(b,d; s)k(sa)

}

Given that both Γ and k(s) are identified, so must be the value function. For any

given υ and s we could write down the maximand, and maximise it using numerical

methods.

2. The ex-ante Value Function is given by V E(s) =
∫
W (υ, s)dF υ(υ). Given that both

F υ and W are both point identified, so is the ex-ante value function.

3. The continuation value is given by V (s) =
∫
V E(s)dF x(x). Given that both F x and

V E are both point identified, so is the the continuation value.

4. The immediate pay-off function can be written as: j(s) = k(s)− βV (s). Given identi-

fication of k and V , as well as the discount factor β, j is also point identified.

G Proof of Proposition 1.

In this Appendix I prove Proposition 1. The proof proceeds in three parts. In Appendix G.1 I prove

the ex-ante value function result, essentially extending Arcidiacono and Miller (2011) to the contin-

uous choice case. In Appendix G.2 I demonstrate that maximised expected payoffs (π(b,d|sg, s0))
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takes this convenient analytic form in the case when reservation prices do not bind. In Appendix

G.3 I extend this result to incorporate binding reservation prices. The only effect this has is that

we must make a small adjustment when bids are observed at the reservation price.

The proposition to be proven, as stated in the main text, is as follows:

Proposition 1. The ex-ante Value Function can be expressed as:

E[W (υit, si, s0)|si, s0] =
E[qt(s

g
i )π(bit,dit|sgi , s0)|s0]

E[qt(s
g
i )|s0]

Where qt(s
g
i ) gives the posterior probability that sgit = sgi and

π(b,d|sgi , s0) =
∑
l

λi
Γl(bil, dil; s0)2

∇bΓl(bil, dil; s0)
−
∑
m6=l

Γl(bil, dil; s0)zgTl Ψiz
g
mΓm(bim, dim; s0)+sgTi Ψis

g
i

G.1 Expected Payoff, Given the State

To simplify notation, I drop the i subscripts and dependence on the observe state s0. This can be

trivially introduced by multiplying objects by I[s0
t = s0]. I also drop dependence on the observed

discrete action d, also trivially introduced by multiplying objects by I[dt = d] and summing over

possible actions, just as in the discrete choice case. I now prove the following:

Eυt [W (υt, s)|s] =
Ebt [qt(s)π(bt|s)]

E[qt(s)]
(10)

Where qt(s) = fst(s|OT ) gives the posterior density, that the unobserved state is s at time t.

The proof makes use of the Dirac Delta function, defined for continuous random variable B with

frequency density fB such that EB[δ(B−b)] = fB(b) and with the property that
∫
B
δ(B−b)dB = 1.

I also make use of the fact that δ((B,S)− (b, s)) = δ(B− b)δ(S− s).

Proof: 1. First, I prove that fbt(b|s) =
EOT [δ(bt−b)|qt(s)]

EOT [qt(s)]
:

fbt(b|s) =
fbt,st(b, s)

fst(s)
Bayes’ rule

=
Ebt,st [δ((bt, st)− (b, s))]

Est [δ(st − s)]
=
Ebt,st [δ(bt − b)δ(st − s)]

Est [δ(st − s)]
Definition of δ

=
EOT [Ebt,st [δ(bt − b)δ(st − s)|OT ]]

EOT [Est [δ(st − s)|OT ]]
Law of Iterated Expectations

=
EOT [δ(bt − b)Est [δ(st − s)|OT ]]

EOT [Est [δ(st − s)|OT ]]
as bt is part of OT

=
EOT [δ(bt − b)qt(s)]

EOT [qt(s)]
Definition of q (11)

2. Next recognise that we can write Eυt [W (υt, s)|s] = Eυt [π(b(υt; s), s)|s] as b is set to
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maximise the period payoff, given υt and s. Here, π is just some known function.

3. Applying a change of variables (the law of the unconscious statistician) ensures this

equals Ebt [π(bt, s)|s]. This requires that the mapping bt = b(υt; s) is monotonic (has

a positive definite jacobian). This result is proven in Altmann (2022), and replicated

in Appendix D.6.

4. Applying the result from step 1.:

Ebt [π(bt, s)|s] =

∫
b

π(b, s)fbt(b|s)db =

∫
b

π(b, s)
EOT [δ(bt − b)qt(s)]

EOT [qt(s)]
db

5. Recognise that the denominator is not a function of the random variable b, so we can

pull it out of the integral. Then, move π(b, s) into the expectation for:

=

∫
b
π(b, s)EOT [δ(bt − b)qt(s)]db

EOT [qt(s)]
=

∫
b
EOT [π(b, s)δ(bt − b)qt(s)]db

EOT [qt(s)]

6. From the definition of the delta function we recognise that the expectation equals

zero for b 6= bt, so that I can replace π(b, s) with π(bt, s). Then, swap the order of

integration, moving the integral into the expectation for:

=

∫
b
EOT [π(bt, s)δ(bt − b)qt(s)]db

EOT [qt(s)]
=
EOT [

∫
b
π(bt, s)δ(bt − b)qt(s)db]

EOT [qt(s)]

7. Within the expectation, bt and s are constant, so pull π(bt, s)qt(s) out of the integral,

before applying the definition of the delta function:

=
EOT [

∫
b
δ(bt − b)db π(bt, s)qt(s)]

EOT [qt(s)]
=
EOT [π(bt, s)qt(s)]

EOT [qt(s)]

G.2 Maximised Payoff

The next part involves essentially applying Proposition 4 of Altmann (2022) to the quadratic pseudo-

static pay-off. For notational simplicity I again drop the dependence on i and s0. I want to prove

that when reservation prices do not bind, so that we can ignore the entry decision, we can write:

W (υ, s) =
∑
l

λ
Γl(bl(υ, s))2

∇bΓl(bl(υ, s))
−
∑
m 6=l

Γl(bl(υ, s))zgTl ΨzgmΓm(bm(υ, s)) + sgTΨsg (12)

Proof: 1. Writing b∗ = b(υ, s), and as discussed in section ?? the maximand and first order
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conditions are given by:

W (υ, s) =
∑
l

Γl(bl)(υl−λbl+Φzhl +2zgTl Ψsg+zgTl Ψzgl +
∑
m 6=l

Γm(bm)zgTl Ψzgm)+Φsh+sgTΨsgT

0 = ∇lΓl(b∗l )(υl−λb∗l + Φzhl +zgTl Ψzgl + 2zgTl Ψsg + 2
∑
m6=l

Γm(b∗m)zgTl Ψzgm)−Γl(b
∗
l )λ

(13)

2. Divide the first order conditions by ∇lΓl(b∗l ) (which by assumption is strictly positive),

then multiply them by Γl(b
∗
l ) and re-arrange for:

Γl(b
∗
l )(υl − λb∗l + Φzhl + zgTl Ψzgl + 2zgTl Ψsg +

∑
m6=l

Γm(b∗m)zgTl Ψzgm)

= λ
Γl(b

∗
l )

2

∇lΓl(b∗l )
− Γl(b

∗
l )
∑
m 6=l

Γm(b∗m)zgTl Ψzgm) (14)

3. Summing this over l, we insert it back into the maximand for:

W (υ, s) =
∑
l

[λ
Γl(b

∗
l )

2

∇lΓl(b∗l )
− Γl(b

∗
l )
∑
m6=l

Γm(b∗m)zgTl Ψzgm)] + Φsh + sgTΨsgT

4. sh is not identified - it does not appear in the FOCs, so does not affect bidding

behaviour. Since the Φsh term is a level shift, without loss of generality, we can drop

this term from the equation, essentially making the normalisation that sh drops to

zero at the end of each period (but only after food banks receive their pay-offs).

G.3 Maximised Payoff, given Reservation Prices

I now extent Proposition 1 to account for endogenous entry and binding reservation prices. As

above, this essentially just applies the results from Altmann (2022) to the quadratic payoff case,

then substitutes this in to the result proven in Appendix G.1 above. The proposition to be proven

is as follows:

Proposition 1′. The ex-ante Value Function can be expressed as:

E[W (υit, si, s0)|si, s0] =
E[qt(s

g
i )π(bit,dit|sgi , s0)|s0]

E[qt(s
g
i )|s0]
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Where qt(s
g
i ) gives the posterior probability that sgit = sgi and

π(b,d|sgi , s0) = sgTi Ψis
g
i +

∑
l

I[bl > Rl]
(
λ Γl(bl,dl)

2

∇bΓl(bl,dl) −
∑
m6=l Γl(bl, dl)z

gT
l Ψiz

g
mΓm(bm, dm)

)
+I[bl = Rl]

(
Γl(Rl, 1)(E[υl|bl = Rl,b−l]− λRl + Φzhl + zgTl Ψ[zgl + 2sg +

∑
m 6=l Γm(bm, dm)zgm)]

)

This function π is essentially the same as in Proposition 1, except that when summing over l we

treat bids differently depending on whether they are at the reserve price or not. E[υl|bil = Rl, bi,−l]

is evaluated using the bounds detailed in Appendix D and the formula for the first moment of the

(doubly) truncated normal distribution.

Proof of this proposition proceeds in two parts. First, I show that the value function can be

written in a form similar to the expression proven in Appendix G.2 - unlike in that Appendix, I

cannot totally eliminate υ from the expression. I then show that when we take an expectation over

υ we can still express this expectation as an integral over (b,d) instead of υ. In Appendix G.1 I

did this in step 3 of the proof, applying the law of the unconscious statistician. In this case I must

first apply the law of iterated expectation to eliminate the υ term left over in the value function.

The remainder of the proof from Appendix G.1 can be applied.

G.3.1 Value Function

As before, write (b∗l , d
∗
l ) = (bl(υ, s), d∗l (υ, s)) for the optimal bidding and entry decisions. I now

show that the value function can be written as:

W (υ, s) = Φsh + sgTΨsgT +
∑
l

I[b∗l > Rl]λ
Γl(b

∗
l )

2

∇lΓl(b∗l )
− Γl(b

∗
l )
∑
m6=l

Γm(b∗m)zgTl Ψzgm)

+ I[b∗l = Rl]Γl(Rl, 1)(υl − λRl + Φzhl + zgTl Ψ[zgl + 2sg +
∑
m 6=l

Γm(b∗m)zgm])

Proof: 1. Equation 12 gives the value function in parametric form. Recognise, since I[b∗l >

Rl] + I[b∗l = Rl] + I[d∗l = 0] = 1 we can write:

W (υ, s)− Φsh − sgTΨsgT =

∑
l


I[b∗l > Rl]Γl(b

∗
l , d
∗
l )(υl − λbl + Φzhl + zgTl Ψ[zgl + 2sg +

∑
m6=l Γm(b∗m)zgm])

+I[b∗l = Rl]Γl(b
∗
l , d
∗
l )(υl − λbl + Φzhl + zgTl Ψ[zgl + 2sg +

∑
m6=l Γm(b∗m)zgm])

+I[d∗l = 0]Γl(b
∗
l , d
∗
l )(υl − λbl + Φzhl + zgTl Ψ[zgl + 2sg +

∑
m6=l Γm(b∗m)zgm])

(15)

2. By definition I[d∗l = 0]Γl(b
∗
l , d
∗
l ) = 0, so the final row of equation 15 equals zero.
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3. Next, since I[b∗l = Rl]Γl(b
∗
l , d
∗
l ) = Γl(Rl, 1), the second row of equation 15 equals:

I[b∗l = Rl]Γl(Rl, 1)(υl − λRl + Φzhl + zgTl Ψ[zgl + 2sg +
∑
m 6=l

Γm(b∗m)zgm])

4. Consider the first row of equation 15. As in Appendix D the FOCs for bid l, subject

to the bid being above the reservation price and given dl = 1, is given by:

0 = ∇lΓl(b∗l , 1)(υl − λb∗l + Φzhl + zgTl Ψ[zgl + 2sg +
∑
m 6=l

Γm(b∗m)zgm])− Γl(b
∗
l )λ+ Λ∗l

Divide the FOCs by ∇lΓl(b∗l ), multiply them by Γl(b
∗
l )m and re-arrange for:

Γl(b
∗
l )(υl − λb∗l + Φzhl + zgTl Ψzgl + 2zgTl Ψsg +

∑
m6=l

Γm(b∗m)zgTl Ψzgm)

= λ
Γl(b

∗
l )

2

∇lΓl(b∗l )
− Γl(b

∗
l )
∑
m 6=l

Γm(b∗m)zgTl Ψzgm) + Λ∗l (16)

When b∗l > Rl the constraint does not bind, so I[b∗l > Rl]Λ
∗
l = 0. Multiply both sides

by I[b∗l > Rl] to show that the first row on the right hand side of equation 15 equals

= λ
Γl(b

∗
l )2

∇lΓl(b∗l ) − Γl(b
∗
l )
∑
m6=l Γm(b∗m)zgTl Ψzgm)

G.3.2 ex-ante Value Function

I now show that Eυ[W (υ, s)|s] can be written as E(b,d)[π(b,d, s)|s] for some function π. This

ensures the proposition proven in Appendix G.1 applies in the binding reservation price case.

Proof: 1. Applying the result proven above, the ex-ante value function is given by:

Eυ[W (υ, s)] = Φsh + sgTΨsgT +
∑
l

Eυ[I[b∗l > Rl]λ
Γl(b

∗
l )

2

∇lΓl(b∗l )
− Γl(b

∗
l )
∑
m6=l

Γm(b∗m)zgTl Ψzgm)]

+ Eυ[I[b∗l = Rl]Γl(Rl, 1)(υl − λRl + Φzhl + zgTl Ψ[zgl + 2sg +
∑
m6=l

Γm(b∗m, d
∗
m)zgm)]]

2. Next, we want to apply the the law of the unconscious statistician to the middle line,

as we did in Appendix G.2. However, Even though this line conditions on bl > Rl,

so that we can apply this law for the bid on lot l, we cannot apply it to the whole

term due to the potentially constrained bids that appear in the combinatorial term

Γl(b
∗
l , d
∗
l )
∑
m 6=l z

gT
l ΨzgmΓm(b∗m, d

∗
m). Instead, apply Lemma G.1 proven below for the
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requisite result:63

Eυ[I[b∗l > Rl]λ
Γl(b

∗
l )

2

∇lΓl(b∗l )
− Γl(b

∗
l )
∑
m 6=l

Γm(b∗m)zgTl Ψzgm)]

= Eb[I[bl > Rl]λ
Γl(bl)

2

∇lΓl(bl)
− Γl(bl)

∑
m 6=l

Γm(bm)zgTl Ψzgm)]

3. Now we focus on the bottom line. Apply the law of iterated expectations for:

Eυ[I[b∗l =Rl]Γl(Rl, 1)(υl − λRl + Φzhl + zgTl Ψ[zgl + 2sg +
∑
m 6=l

Γm(b∗m, d
∗
m)zgm)]]

= Eb[Eυ[I[b∗l =Rl]Γl(Rl, 1)(υl − λRl + Φzhl + zgTl Ψ[zgl + 2sg +
∑
m 6=l

Γm(b∗m, d
∗
m)zgm)]|b]]

= Eb[I[bl=Rl]Eυ[Γl(Rl, 1)(υl−λRl+Φzhl +zgTl Ψ[zgl +2sg+
∑
m6=l

Γm(b∗m, d
∗
m)zgm)]|bl = Rl,b−l]]

= Eb[I[bl=Rl]Γl(Rl, 1)(Eυ[υl|bl = Rl,b−l]−λRl+Φzhl +zgTl Ψ[zgl +2sg+
∑
m 6=l

Γm(b∗m, d
∗
m)zgm)]]

4. Substituting these two expressions back into the ex-ante value function yields the

desired result.

Lemma G.1.

Eυ[λ
Γl(b

∗
l )

2

∇lΓl(b∗l )
− Γl(b

∗
l )
∑
m6=l

Γm(b∗m)zgTl Ψzgm)|b∗l > Rl]

= Eb[λ
Γl(b

∗
l )

2

∇lΓl(b∗l )
− Γl(b

∗
l )
∑
m 6=l

Γm(b∗m)zgTl Ψzgm)|bl > Rl]

Proof: 1. First we split the object into four components, each dealt with separately. This is

performed using the linearity of the expectation operator and the law of iterated ex-

pectations. Write:

Eυ[λ
Γl(b

∗
l )

2

∇lΓl(b∗l )
− Γl(b

∗
l )
∑
m 6=l

Γm(b∗m)zgTl Ψzgm)|b∗l > Rl] =

= Eυ[λ
Γl(b

∗
l )

2

∇lΓl(b∗l )
|b∗l > Rl]

−
∑
m6=l


P [b∗m > Rm]Eυ[Γl(b

∗
l )Γm(b∗m)zgTl Ψzgm)|b∗l > Rl, b

∗
m > Rm]

P [b∗m = Rm]Eυ[Γl(b
∗
l )Γm(b∗m)zgTl Ψzgm)|b∗l > Rl, b

∗
m = Rm]

P [d∗m = 0]Eυ[Γl(b
∗
l )Γm(b∗m)zgTl Ψzgm)|b∗l > Rl, d

∗
m = 0]

(17)

63Recognising that for random variables X and Y , E[Y I[X = x]] = P (X = x)E[Y |X = x].
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Where the final equality holds by definition. We have essentially just applied the law

of iterated expectation.

2. We can apply the law of the unconscious statistician for Eυ[λ
Γl(b

∗
l )2

∇lΓl(b∗l ) |b
∗
l > Rl] =

Ebl [λ
Γl(bl)

2

∇lΓl(bl) |bl > Rl] as we condition on bl > Rl, and we know that the function bl(υ)

is monotonic in this region.

3. Likewise

Eυ[Γl(b
∗
l )Γm(b∗m)zgTl Ψzgm)|b∗l > Rl, b

∗
m > Rm]

= Ebl,bm [Γl(bl)Γm(bm)zgTl Ψzgm)|bl > Rl, bm > Rm]

as we condition on bl > Rl and bm > Rm, and we know that the functions bl(υ), bm(υ)

are monotonic in this region.

4. Considering the middle row:

Eυ[Γl(b
∗
l )Γm(b∗m)zgTl Ψzgm)|b∗l > Rl, b

∗
m = Rm]

= Γm(Rm)Eυ[Γl(b
∗
l )z

gT
l Ψzgm)|b∗l > Rl, b

∗
m = Rm]

Which is then just a function of b∗l , which we know to be above the reservation price,

so the law applies, for:

Eυ[Γl(b
∗
l )Γm(b∗m)zgTl Ψzgm)|b∗l > Rl, b

∗
m = Rm]

= Γm(Rm)Ebl [Γl(bl)z
gT
l Ψzgm)|bl > Rl, bm = Rm]

5. Considering the final row, by the same logic as above we have

Eυ[Γl(b
∗
l )Γm(b∗m)zgTl Ψzgm)|b∗l > Rl, d

∗
m = 0]

= 0 = Ebl [Γl(bl)Γm(∅, 0)zgTl Ψzgm)|bl > Rl, dm = 0]

6. Recognising that P [bm(υ) > Rm] = P [bm > Rm], We have therefore shown that

equation 17 is equal to:

Ebl [λ
Γl(bl)

2

∇lΓl(bl)
|bl > Rl]

−
∑
m6=l


P [bm > Rm]Ebl,bm [Γl(bl)Γm(bm)zgTl Ψzgm)|bl > Rl, bm > Rm]

P [bm = Rm]Ebl,bm [Γl(bl)Γm(bm)zgTl Ψzgm)|bl > Rl, bm = Rm]

P [dm = 0]Ebl,bm [Γl(bl)Γm(bm)zgTl Ψzgm)|bl > Rl, dm = 0]

7. Which, by the law of iterated expectations and linearity of the expectation operator,
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is equal to

Eb[λ
Γl(b

∗
l )

2

∇lΓl(b∗l )
− Γl(b

∗
l )
∑
m6=l

Γm(b∗m)zgTl Ψzgm)|bl > Rl]

H Estimation Details

In this Appendix I give additional details of the estimation procedure outlined in Section 5. I

outline my specification of priors, as well as computational details of how each step of the estimation

procedure is performed. Appendix H.1 outlines details of the first estimation step, Appendix H.2 the

second step, Appendix H.3 the third step, and finally Appendix H.4 details the model specification

used for the Type 2 food banks.

H.1 Step 1.

In the first estimation step I estimate food banks beliefs about the probability they win a given lot

given their bid. While I assume there is zero probability of ties above the reservation price, I allow

for the possibility of ties at the reservation price. I begin by discussing how I conceptualise food

banks’ beliefs in Appendix H.1.1. I discuss ties in Appendix H.1.2. I then detail my parametrisation

in Appendix H.1.3, before discussing how estimation is performed H.1.4.

H.1.1 Maximum Rival Bid

I do not explicitly parameterise bid distributions and use this to form food banks’ beliefs about

equilibrium win probabilities, as in Jofre-Bonet and Pesendorfer (2003) or Gentry et al. (2020).

Instead I take an approach closer to that in Backus and Lewis (2016) and estimate the distribution

of equilibrium winning bids. If the winning bid on auction l at time t was b̄lt, then food bank i

knows they would have won the lot had they bid bilt > b̄lt. If no food bank placed a bid on lot l then

food bank i knows they would have won if they had bid the reservation price. If a food bank won

lot l at the reservation price, i knows they would have drawn had they bid the reservation price.

A food bank’s ex-ante belief about the probability of winning given a bid is given by P (b̄lt <

bilt|st), which requires the conditional cdf of the random variable b̄lt. However, this object is subject

to censoring at the reservation price.

H.1.2 Ties

Ties are observed very rarely in the data, in around 0.02% of auctions, and all at the reservation

price. Due to the continuity of bids, ties happen above the reservation price with probability zero.64

However, because winning bids are observed more frequently at the reservation price, in around 20%

64In practice bids must be integer amounts, but because bids tend to range between −2000 and
4000 I treat this as continuous.
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of auctions, food banks must consider the much larger chance of a tie if they bid the reservation

price and no higher. Furthermore, food banks appear to recognise this, and often bid just above the

reservation price. This means we get high density of winning bids just above the reservation price

which food banks presumably also recognise, and so must be taken into account in the model.

The bidder wins lot l given bid bilt if bilt > b̄lt. If bilt = b̄lt they win with probability 0.5.65 Like

i’s bids, b̄lt is censored both at Rl (when the maximum rival bid equals the reservation price) and

below it (when no rivals place bids). Therefore I introduce the latent random variable b̄∗lt, with cdf

Gl(b
∗|s0t), such that:

b̄lt =



b̄∗lt if b̄∗lt > Rlt

Rl + εlt if b̄∗lt ∈ [Rl, R̄l)

Rl if b̄∗lt ∈ [R̄l, Rl)

∅ if b̄∗lt ≤ Rl

Where (R̄l, Rl) are a category specific cutoff to be estimated. This is not dissimilar to cutoffs

estimated in an ordered logit model, enabling me to capture the varying likelihood of winning bids

at the reservation price across categories. This latent variable structure states that if the ‘true’,

latent, winning bid b̄∗lt is extremely low (≤ Rl), then a competing food bank would win if it bid the

reservation price. If it is somewhat higher b̄∗lt ∈ [R̄l, Rl) then the observed winning bid is just the

reservation price - a competing food bank would draw if it bid the reservation price. The competing

food bank may not value the lot enough to bid much above the reservation price, but may be

willing to bid just one or two additional shares to ensure it doesn’t risk a tie. Finally, if b̄∗lt is just

below the reservation price b̄∗lt ∈ [Rl, R̄l) then the observed winning bid is actually just above the

reservation price, where εlt ∼ exponential(α) and α is a parameter to be estimated. This means

that a competing food bank must take into account the excess mass just above the reservation price

- if it bids just one share above the reservation price it may lose out to equally strategic food banks.

This modelling approach is unusual, but enables the model to rationalise both the excess mass

of winning bids at the reservation price, and also just above it. I assume that food banks do not

internalise the probability of tieing at just one share above the reservation price (and likewise two,

three, etc shares). Importantly, Rl is identified by the excess mass of winning bids at the reservation

price (and how this varies across categories). R̄l is identified from the excess mass just above the

reservation price, and α is identified from how the excess mass diminishes as we move further from

the reservation price.

Given the distribution of b̄∗lt, and implied distribution of b̄lt, Food bank i’s beliefs are given by:

P (i wins l|bilt; s0t) = Γl(bilt|s0t) =


Gl(bilt|s0t)− f(bilt) if bilt > Rlt

1
2Gl(R

c|s0t) + 1
2Gl(R̄

c|s0t) if bilt = Rlt

0 otherwise

(18)

65In other words I assume they tie with at most one other bidder, and the tie is broken with the
flip of a coin. In practice, bidders believe that ties only occur with more than one bidder at the rate
that ties are observed in the data, in 0.02% of auctions, which I deem as negligible.
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Where f(bilt) = [Gl(Rl|s0t) − Gl(R̄c|s0t)]e
−αbilt capture the probability that i loses out to a food

bank bidding just above the reservation price.

H.1.3 Parameterisation

I normalise all bids by the reservation price, so that the estimated distributions can be considered

the distribution of the difference between the winning bid and the reservation price. Therefore from

here on, we can replace b̄∗lt with b̄∗lt − Rl. Reservation prices are known to be −2000 for all lots

except for fresh produce and Maroon lots which have Rl = 0.

As in Assumption 4 I assume that the distribution of b̄∗lt is a function of ϑ({si}N ), aggregate

statistics of states only, so that it does not depend on the states of each individual food bank. In

particular, I assume that it only depends on the previous 30 day supply of food from each storage

type, as well as the supply of food allocated at time t from each storage type. This is intended to

capture how prices vary with supply. This also ensures that food banks do not need to take into

account exactly which food bank wins which combination of lots each period. Instead, i only needs

to consider which lots they themselves win.

I assume that the latent random variable b̄∗lt, on lot l given common state s0t, follows a generalised

extreme value distribution, with:

P (b̄∗lt ≤ b|s0t) = exp(−t(b− ν(s0t)

ζ(s0t)
)) Where : t(x) =

(1 + ξ(s0t)x)
− 1
ξ(s0t) if ξ(s0t) 6= 0

exp(−x) if ξ(s0t) = 0

The shape parameters ξ are category specific for categories with at least 500 loads, and the

remainder are constrained to be equal to one another. Shape parameters are constrained to be

> −1 to ensure bids are monotonic in values. This constraint does not bind.

The scale parameters ζ are also category specific. In addition, within a category if the subcat-

egory is listed as “unspecified”, “mixed” or “miscellaneous” these receive an additional fixed effect

on their scale parameter. This is to allow me to capture additional variation due to uncertainty over

the goods included in the lot. I constrain scale parameters to be strictly positive. Finally, I also

allow the scale parameter for lot l to vary depending on whether the lot has also been auctioned in

a previous period. If this is the case bidders gain information about rival bidders values for this lot,

making it intuitive that the variance of rival bids is expected to decrease.

Each lot can contain up to four distinct categories, subcategories and storage types. Therefore,

for both the shape and scale parameters, if the lot contains a mixture of categories, I use an average

over the different categories / subcategories.

The location shifter ν varies with both lot specific covariates and the common state variable.

I include subcategory fixed effects, as well as dummies for whether the lot includes free delivery,

geographic restrictions, any unobserved notes about the lot contents, whether the lot is a “Maroon

load” (category specific for categories with at least 50 maroon loads), which US region the lot

originates in,66 is shelf-stable, the number of distinct categories included in the lot, whether the lot

66Using the 8 US economic regions + Canada
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has been auctioned previously, and the number of homogenous loads being auctioned simultaneously.

It also varies with the log of the sum of the previous 30 day’s supply of that type of food, up to t−1, by

storage type, and the log of the sum of food of that storage type being auctioned simultaneously that

day. As with the shape and scale parameters, if the lot includes multiple categories, subcategories,

or storage types, I use the average location shifter.

The threshold cutoffs R̄l and Rl are allowed to vary across categories, but only for categories

in which there are at least 100 lots won at the reservation price. This includes Beverages, Cereal,

Condiments, Fresh Produce, Meals, and Snacks. The remaining categories are grouped together.

The exponential parameter α is constrained to be positive.

H.1.4 Computation

In the first stage I estimate 268 parameters, distributed over 26, 000 auctions, dropping the first 60

days to enable construction of the sum of the previous 30 days’ supplies.

Parameters are initially estimated using maximum likelihood, using the implied distribution

of b̄lt. I set initial shape parameters to 0, and initial scale parameters to the observed standard

deviation of winning bids. I set all the location shifters to zero.

Having maximised the likelihood function, I then draw samples from the posterior distribution

using the Metropolis Hastings algorithm. I use the inverse hessian from the maximum likelihood

procedure for my proposal variance, and also adaptively tune this variance using the procedure of

Atchadé and Rosenthal (2005) to ensure that on average 23.4% of proposed draws are accepted.

H.2 Step 2.

In the second estimation step I estimate the distribution of lot specific values, the distribution of net

local donations, and the pseudo-static pay-off function. In Appendix H.2.1 I restate my parametri-

sation as in the main text. In Appendix H.2.2 I set out my assumptions on prior distributions. In

Appendix H.2.3 I discuss the data augmentation algorithm, and in Appendix H.2.4 I discuss the

gibbs sampling algorithm for drawing parameters from their conditional posteriors. In Appendix

H.2.5 I discuss additional computational details. Note that this appendix makes heavy use of the

results on the inverse bid system given in Appendix D.

H.2.1 Parametrisation

As stated in Section 5, the main parametric assumptions are as follows:

k(si) = Φshi + sgTi Ψis
g
i υilt ∼ N(αidistanceilt, σ

2
l ) xit ∼ N(µi,Σi)

The 164 subcategory parameters of Φ are constant across food banks, and constrained to be

positive. This is to allow us to interpret these subcategory weights as the benefit food banks receive

from holding the various subcategories to give out to the clients. This constraint doe not bind. Ψi

is a symmetric matrix that is allowed to vary across food banks, with 15 unique elements for each
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food bank (5 storage types and 10 interaction terms). I do not impose other constraints on this

matrix, given that with probability 1 each draw of the matrix will have full rank.

αi gives food bank i’s cost, in shares, of transporting a lot an additional kilometre. These

parameters are constrained to be negative (costs), and this does not bind. I do not allow this cost

to vary with either the size of the lot, or the type of food. I allow the lot specific variance to

vary depending on the combination of goods auctioned together in the lot. In particular, I find the

60 most common category combinations (e.g. 2
3 dairy 1

3 cereal), and associate each combination

with a unique variance parameter. I also include an ‘other’ variance parameter, which covers the

remaining 5.5% of combinations. I parametrise the lot specific variances in this manner as it makes

the problem of sampling from their posterior significantly easier. These parameters are constrained

to be positive, and are not allowed to vary across food banks. The λi parameters, which capture

the opportunity cost to food bank i of spending a share essentially capture variation in the variance

of bids across food banks. These parameters are also constrained to be positive, and the parameter

for the median consuming Type 1 food bank is constrained to 1.

Finally, for the distribution of net local donations I impose that Σi is a diagonal matrix. Informed

by the analysis from Appendix C I impose that diagonal entries are strictly above 0.01V ar[wT
itzt]

and below 100V ar[wT
itzt]. For all parameters, if not otherwise constrained I impose an upper limit

of e50 and a lower limit of −e50.

H.2.2 Priors and Hierarchical Distributions

Write ψi as the vector of unique elements of the matrix Ψi. I assume these come from the hierarchical

distribution, such that

ψi ∼ N(ψ,Σψ)

The hierarchical framework reduces the posterior variance of estimated parameters at a cost

of bias, as estimated parameters are drawn together. Observations with a lot of identifying varia-

tion place little weight on the hierarchical parameters, whereas observations with little identifying

variation place more weight on hierarchical parameters. Any bias caused by this framework causes

parameters to be drawn together, so that my estimates will be biased in favour of the Old System

rather than the Choice System. I assume weak inverse-Wishart priors for the hierarchical param-

eters (ψ,Σψ). The prior mean for ψ is -1 for diagonals and zero for off-diagonals of Ψ. The prior

mean for Σψ is set to be arbitrarily small. The two shape parameters are each set to 2.

I assume independent normal priors for Φ and αi with means 1
40 and 1 respectively, and prior

variance 10000 to reflect my prior ignorance over these parameters. I assume weak inverse-gamma

priors for the lot specific variance, with prior-mean set to the observed variance of bids, and shape

parameter set to 2. For the lambda parameters I assume that λ2
i takes a prior gamma distribution

with shape and rate parameters T 0
λ = 100. This ensures λ2

i has prior mean of 1, and confidence

about this prior mean equal to approximately 1/100th the weight placed on the data.

I assume normal-inverse-gamma priors for µi and Σi, with prior means µ0
i = 1

T

∑T
t=1 wT

itzit and

Σ0
i = 2

T−1

∑T
t=1(wT

itzit − 1
T

∑T
t=1 wT

itzit)
2 respectively. Given that in my estimation sample I have

T = 1075, I set prior ‘shape’ parameters for these distributions to 107, essentially meaning that I
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place ten times as much weight on the data as I do on my priors.

H.2.3 Data Augmentation step

Given parameters and unobserved states I form the inverse bid system as in Appendix D. For

observation ilt such that bilt > Rlt the inverse bid system gives me a conditional observation of υilt.

For observations of bids at or below the reservation price I am only able to bound υilt. I augment

my data by drawing these conditional observations from their conditional posterior, the truncated

normal distribution, using the sampling procedure of Botev (2017). I then revert these inverse bids

into ‘observations’ yilt, essentially observations of bids from below the reservation price.

To sample the unobserved states from their posteriors I run a standard Kalman filter using the

current draw of parameters and the current draw of censored observation. I begin the filter on day

61, as I do not have estimates of beliefs from before this point. I set the initial state to 0, essentially

normalising the first set of stocks, with initial variance of zero.

I then run the Carter-Kohn algorithm (Carter and Kohn, 1994) to backwards sample the un-

observed states from their conditional posterior. I only run it backwards until day 101, essentially

discarding an extra 40 days of the filter. I do this to reduce the reliance on the initial state assump-

tion. This is because even though the initial state is not identified, if there is significant bayesian

shrinkage due to the hierarchical model, the initial state actually may be identified.

Finally, I also take into account the observed change in the supply of fresh produce that occurs

on day 553 in my sample. Thereafter fresh produce stops being allocated through the Choice System

and is instead allocated to food banks outside the system. Each food bank has two separate mean

local donations for fresh food, one for before this period and one after this period. I fix the parameter

for after period 553 to 0, so that on average food banks give out as much fresh food as they receive

in net local donations. Anything else would lead stocks either to trend upwards or downwards

indefinitely. Therefore I only estimate the expected net donation for fresh food using sampled states

from before the break.

H.2.4 Gibbs Sample step

Given a sample of states {sit}t∈{1...T} I back out a sample of net local donations by writing the

transition equation as a function of xit. Write xitm for the mth element of xit. The conditional

posterior distribution is then normal-inverse-gamma, and given as:

(µim,Σimm)| {xitm}t∈{1...T} ∼ N − IG(A,B,C,D)

A =
T 0µ0

im + T x̄im
T 0 + T

B = T 0 + T C =
T 0 + T

2

D =
T 0Σ0

imm

2
+

1

2

T∑
t=1

(xitm − x̄im)2 +
TT 0

T + T 0

(x̄im − µ0
im)2

2
)

x̄im =
1

T

T∑
t=1

xitm
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I then move on to the parameters of k and F υ. I focus on Ψi first, rewriting the observation

equation (making use of both sampled states and censored observations) as:

Yilt = λiyilt−Φzhtl−αidistilt = zgTtl Ψi(z
g
tl+2sgit+2

∑
m 6=l

Γim(bitmzgtm))+υitl−αidistilt = Xitlψi+εitl

Stacking Yitl and Xitl over tl, the conditional posterior distribution of ψi is then multivariate normal,

and given as:

ψi|(Yi,Xi), (ψ,Σ
ψ) ∼ N(M,V )

M = V −1(Σ−1ψψ + XT
i Yi) & V = (Σ−1ψ + XT

i Xi)
−1

The hierarchical parameters (ψ,Σψ), which I sample after sampling Ψi, have normal-inverse

Wishart distribution, with conditional posterior:

(ψ,Σψ)| {ψi}i∈{1...N} ∼ N − IW (A,B,C,D)

A =
Nψ̄ +ψ0

N + 1
B = N + 1 C = N + 1

D = Σ0ψ,−1 +
∑
i

(ψi − ψ̄)(ψi − ψ̄)T +
N

N + 1
(ψ̄ −ψ0)(ψ̄ −ψ0)T )

ψ̄ =
1

N

∑
i

ψi

I jointly sample the distance parameters αi and subcategory weights Φ using standard bayesian

regression, given normal priors, Ψi, sampled states and censored observations. I sample lot-specific

variances just as in bayesian regression, given regression coefficients and {λi}i∈{1...N}.
Finally, rewriting the observation equation as: λiyilt = Zitlδ+ εilt, the conditional posterior pdf

of λi is proportional to:

f(λi|Zi, δ, σ) ∝ (
λ
LT+2(T 0

λ−1)
i∏
lt σl
√

2π
)exp(−1

2
(λ2
i

∑
tl

yilt
σlt

2
− λi

∑
tl

2
yiltZitlδ

σ2
lt

+ 2T 0
λ))

I draw samples from this posterior distribution using a metropolis hastings step. I then divide the

λis by that of the median food bank, ensuring the relevant normalisation.

H.2.5 Computation

I focus on data from only the highest 25 bids placed each day by each food bank. Even type 1 food

banks rarely place more than between 5 and 10 bids each day - the 90th percentile food bank only

bids on 4 lots each day. However on 50% of days with at least one auction there are more than 25

unique lots being auctioned simultaneously. In principle by ignoring that food banks also choose

not to bid on any more than the first 25 lots I may bias my results towards food banks being willing
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to bid on a higher proportion of auctioned lots than in fact. However, the degree of this bias is

unlikely to be large, since I am already taking into account that food banks only bid on maybe the

first 10 lots, then choose not to bid on the next 15 lots. Furthermore, to show robustness to this

assumption in Appendix J.2.4 I present results from considering 50 unique auctions each day. This

assumption is useful in ensuring results converge relatively more quickly, since the higher the degree

of censoring, the slower results are expected to converge.

The order of my data augmentation and Gibbs Sampling procedure is as it was presented in the

main text. Every tenth iteration I draw a new sample of beliefs using five repetitions of Metropolis

Hastings. At the very beginning of the procedure I run the data augmentation step 30 times without

running the gibbs sampling step. This is to reduce the sensitivity to the initial draw of augmented

data, in which it is assumed that states do not vary at all.

I run the full procedure for 300,000 iterations, and burnout the first 200,000 draws. I run 4

independent chains. For parameters with informative priors, initial points are drawn from the prior

distribution. For parameters with diffuse priors I sample uniformly between 0 and 2 × the prior

mean. I uniformly sample 250 points from each of the chains, so that I keep 1,000 parameter draws

in total. I then use these parameters in evaluating both the third stage, and the Choice System

simulations. I estimate around 1780 parameters across 1.1 million observations observations, 0.95

of which are censored (i.e. a bid is not placed).

H.3 Step 3.

In the third estimation step I evaluate the continuation value as a function of observed bids and the

pseudo-static pay-off, before backing out the combination flow pay-off.67

In Appendix H.3.1 I describe how I form the posterior probabilities that st = s, given by qt(s).

In Appendix H.3.2 I outline how I evaluate the expression for the maximised expected pay-off.

In Appendix H.3.3 I discuss how I pool information across food banks in this estimation stage. In

Appendix H.3.4 I justify and detail the polynomial approximation used for the ex-ante value function.

Finally, in Appendix H.3.5 I describe how I take the expectation of the ex-ante value function over

states, yielding the continuation value, before backing out the combination flow payoff.

67One thing to note: The marginal welfare from consuming a lot with subcategory composition
zhtl is just Φzhtl, and does not depend on shit. I do not need to worry about the fact that Φ is a
‘pseudo-static’ object, not a present discounted sum of expected future flow payoffs from winning
zhtl. The reasons for this are simple - when flow payoffs are affine in shit, so is the pseudo-static payoff.
Furthermore, bidding behaviour does not depend on shit, and so future bidding behaviour does not
depend on zhtl. Suppose the flow payoff is given by Φ̃shit + j(sgit), and allow that shit = δshit−1 +
wT
it−1z

h
t−1 +xhit. In this case, the marginal welfare from winning a lot with subcategory composition

zhtl (focusing only on the subcategory component) is just Φ̃
∑∞
s=0 β

sδszhtl = Φ̃(I−βδ)−1zhtl. Therefore

Φ = Φ̃(I − βδ)−1.
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H.3.1 Posterior Probabilities

Because states are continuous I must evaluate the continuation value over a finite set of states. For

each food bank I form a 205 dimensional grid of states, so that each dimension of stocks is split into

20 evenly spaced points. For the minimum and maximum points I take the 2.5 and 97.5 percentiles

of all their sampled states.

For each of these states I form the posterior probability density that at any given time this

was the true state of their stocks, using my 1, 000 draws of states for each time period. I use an

independent normal kernel, with Silverman’s rule of thumb to calculate bandwidth h:

q̂it(s) = p̂(sit = si|data) =

5∏
m=1

1

1000

1000∑
r=1

1

hm
φ(
sritm − sim

hm
)

H.3.2 Maximised Payoff

I evaluate the maximised pay-off at each time period π(bt,dt|s) using the reservation price adjusted

formula discussed in Appendix G.3. This expression is evaluated once for each parameter draw,

using the sample counterparts to the expectation operators given.

In principle I ought to take into account sampling variation in these finite sample expectations.

However, given the large number of time periods we expect fairly little variation. One possibility is

to use a bootstrap procedure when evaluating these averages to ensure that we introduce sampling

variation alongside the variation in parameters from our draws. The difficulty is that this does

not account for the correlations between sampled parameters and the sample expectations, so will

overestimate posterior variances. This procedure is performed in Appendix J.3.3.

H.3.3 Information Pooling

I also pool information across food banks, in order to give me additional observations when eval-

uating the expectation. Similar to the bayesian hierarchical model, this is expected to bias my

estimates in favour of the Old System, pushing food banks’ flow pay-offs closer together. However,

I use two adjustments to minimise this bias.

When constructing the ex-ante value function for food bank i given parameter draw θi, I find

the probability density (using the same independent normal kernel as used above) that food bank

j draws these parameters given their posterior distribution. The parameters I compare are the

estimates for Ψi, αi, and λi. I do not need to compare parameters for the net donation process,

since the ex-ante value function is evaluated conditional on the state anyway. This density yields a

weight for food bank j. I normalise the weights so they sum to 1. Then, when summing posterior

probabilities across t I also multiply the probabilities by the associated food bank weight.

Finally, I also use a first-order adjustment to account for the fact that different food banks bids,
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and hence maximised payoffs, are determined by different parameters. Write:

πi(bt,dt|sit; θi) ≈ πj(bt,dt|sit; θi) +∇Ψ,α,λπj(bt,dt|sit; θi)

Ψi −Ψj

αi − αj
λi − αj


Where the derivative ∇Ψ,α,λπj(bt,dt|si; θi) comes from differentiating maximised expected pay-

off with respect to the parameters, employing the envelope theorem. This should reduce the bias

caused by different food banks bidding subject to different parameters.

In Appendix J.3.2 I consider my results differ when I do not pool information across food banks.

H.3.4 Approximation

Having evaluated the ex-ante value function across the grid of states I fit a polynomial function of

the states to the ex-ante value function. I include all interaction terms. The fit is performed using

a standard weighted least squares procedure, weighting by the sum of posterior probabilities. This

is to ensure that state observations that are more likely receive greater weight.

The main version uses a simple quadratic function. This is done primarily because my coun-

terfactuals occasionally require extrapolation (given many of my counterfactual mechanisms do not

allow food banks to maintain their balanced level of stocks). A quadratic polynomial has the ap-

pealing property that changes in the extrapolated values are constrained to be linear. The difficulty

with higher-ordered polynomial (e.g. cubics, quintics etc) is that extrapolated values can be much

further from interpolated values.

To validate the quadratic approximation I consider several measures of fit: The R2 from the

regression, as well as the results from considering higher order polynomials (up to order 6). These

results are presented in Appendix J.3.1.

H.3.5 Continuation Value

Given the approximated ex-ante value function I evaluate the continuation value by taking an

expectation of the polynomial function, given the distribution of sit+1 given sait. This is done using

standard recursive formulae for the higher order moments of normally distributed random variables.

With the continuation value in hand I evaluate the combinatorial flow-payoff using the definition of

the estimated pseudo-static payoff function. All the above analysis is performed separately for time

periods from both before and after period 553, when there is a structural break in the supply of

fresh produce. I then average (weighting appropriately) the estimated flow payoffs from either side

of the break. In future I will test whether continuation values and hence estimated combinatorial

flow-payoffs are constant over the break.
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H.4 Type 2 Food Banks

I now discuss the model of Type 2 food banks, the food banks who do not bid, nor win, regularly. This

means I do not have significant identifying variation to allow estimation of their model parameters

without a large degree of noise. Furthermore, many of these food banks never win certain types of

food at all, meaning their parameters are not separately identified.

The Type 2 food banks consist of those food banks who win fewer than 200 lots over the sample

period, and excludes the food banks who’s locations are unknown or consume fewer than 30 lots

over the period (which make up 2.5% of total consumption).

H.4.1 Differences to Type 1s

The key difference is that Type 2 food banks are assumed to be myopic bidders. That is, they are

not forward looking. Aside from this assumption, I estimate the model using the same specification

and estimation procedure as I used to estimate the pseudo-static payoff function for Type 1 food

banks. I continue to recognise that I not observe food banks’ stocks, and that variation in stocks is

likely to be a key source of variation in bidding behaviour.

Due to the lack of variation in winnings and bids (an even more extreme degree of censoring),

I assume that the combinatorial pay-off function for Type 2 food banks comes from the same

hierarchical distribution as the pseudo-static payoff from Type 1 food banks. This means Type

2 food banks have the same Φ parameters, and their Ψi parameters are drawn from the same

hierarchical distribution.68 I also assume their lot specific values υitl have the same variance as

Type 1 food banks. I also assume they have the same beliefs as Type 1 food banks.

Therefore at each iteration of the estimation procedure I do the following: First, given the pre-

vious draw of parameters and unobserved states, draw censored observations from their conditional

posterior. Second, given the previous draw of parameters and censored observations, use the Carter-

Kohn algorithm to draw unobserved states from their conditional posterior distribution. Third, draw

Φ, σl, and hierarchical parameters (ψ,Σψ) from the unconditional posterior distribution of Type 1

food banks. Fourth, use the Gibbs Sampling algorithm described above to draw Ψi, then αi and λi

parameters from their conditional posterior distribution. Finally, every 10th iteration, draw beliefs

from their posterior distribution using Metropolis Hastings.

I use the same specification of priors as type 1 food banks and the same distributional/functional

form assumptions. Again, I focus on just the first 25 unique auctions each period. I run 200,000 iter-

ations, burning out the first 100,000 draws, and perform 4 independent chains. I keep 250 parameter

draws from each chain, sampled uniformly, maintaining the correlations with the sampled param-

eters from Type 1 food banks. I estimate around 2400 parameters across 1.6 million observations,

1.45 million of which are censored.

68I previously considered imposing that they all have the same Ψi, however due to the large
amount of data, and the large degree of censoring convergence is impractically slow.
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H.4.2 Discussion

In reality even the Type 2 food banks are likely forward looking. And in principle, rather than

interpret what I estimate as a static payoff, I could interpret it as another pseudo-static payoff

function. Therefore I could apply the third stage estimation procedure. While this procedure is

likely to produce fairly imprecise results, due to the lack of variation in bidding behaviour and

imprecise estimates, I will consider this approach in a future robustness exercise.

However, the cost of misinterpreting their pseudo-static payoff function as a payoff function is

potentially large. This is despite that Type 2 food banks only consume a relatively small amount of

food under the Choice System, and even less under the Old System. This is because pseudo-static

payoffs take into account expected future flow payoffs. Therefore when summing over time periods

we essentially double count flow payoffs, skewing results towards these (typically lower priority) food

banks. To alleviate this issue (and only in my final welfare calculations) I make the simplification

that the exante value function for Type 2 food banks can be written as K + sgTi Ψis
g
i . Comparing

this to the ex-ante value function for Type 1 food banks, the quadratic term is just the pseudo-

static payoff from winning no lots each period. This simplification therefore asserts that the ex-ante

marginal value function, given here by K, is independent of sgi . Given that type 2 food banks bid

so infrequently this simplification is plausible. We can then write the flow payoff function as:

j(sgit) = sgTit Ψis
g
it−β(K+E[sgTit+1Ψis

g
it+1|s

g
it]) = (1−β)sgTit Ψis

g
it−2βµTi Ψis

g
it−β[µTi Ψiµi+Trace(ΨiΣj)]

Given that we normalise j(0) = 0, the constant term drops out. This process ensures that we do

not double count flow payoffs. It is true that this simplification will impact my welfare calculations,

but the effects are expected to be minor given that Type 2 food banks only consume a relatively

small amount of food under the Choice System.

Even though I use this approach for welfare calculations, I continue to assume to assume myopia

for counterfactual simulations. That is, their accept/reject decisions are based the estimated pseudo-

static payoff under the Choice System, rather than the estimated flow payoffs and a counterfactual

equilibrium continuation value. Therefore, my simulated counterfactual equilibrium will be invalid.

Using the pseudo-static payoff essentially assume that the mechanism reverts to the Choice System

in the following period. These food banks rarely bid, and rarely win, and are more likely than

others to be picky. Therefore they are likely to reject more often than they should, as their value

function incorrectly assumes they can be picky next period. In practice, for Type 1 food banks,

I find that the discounted continuation value is not a large component of accept/reject decisions

under the Old System. This is because the continuation value is extremely flat - much more so than

the continuation value under the Choice System. Therefore this inaccuracy is likely to be minor.

I Additional Estimation Results

In this Appendix I report additional estimation results, adding to those in section 6. This includes

tables and plots of parameter estimates, Gelman-Rubin Convergence tests, and model fit.
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I.1 First Stage

I.1.1 Shape Parameters

Differ if more than 500 loads. Category specific shape parameters are given in column 1 of Figure 19.

Only the 8 most common categories (with more than 500 loads auctioned over the period, excluding

fresh produce) have category specific parameters, the remainder are constrained to be equal. The

estimated shape parameters for mixed loads is 0.0538 (0.0383,0.0685). These parameters all lie

within the interval (-0.05,0.1) with the exception of Condiments, Cereal, and Meals which have

values exceeding 0.1, suggesting that winning bids on these types of food have larger right tails,

likely due to subcategories, such as peanut butter, that attract extremely high bids. Only Dairy

has a shape parameter that is estimated to be significantly below zero, meaning that winning bids

on Dairy are bounded above. This is perhaps due to the storage requirements for Dairy products.

I.1.2 Scale Parameters

The standard deviation of the winning bid on lot l is given by σl
ξl

. Column 2 of Figure 19 give the

estimated scale parameters. These typically lie between 2000 and 5000, with the exception of fresh

Produce, for which winning bids are typically clustered around the reservation price and have small

standard deviation, and Pasta, which receives a small number of very high bids.

Column 2 of Figure 19 gives the additional scale fixed effect from a load being from the ”other”,

”mixed” or ”assorted” subcategories. If this value is negative it suggests these subcategories have

a smaller standard deviation than other subcategories within the category. Most often, these pa-

rameters are not estimated to be significantly different from zero. I also estimate an additional

parameters for when the load has already been auction previously, since food banks have additional

information about previous bids on the load. This parameter is estimated at 3370 (3030,3710).

I.1.3 Location Parameters

Figure 20 plots the subcategory specific fixed effects. Results are strongly correlated with the results

presented in figure 4 (R2 = 0.74). Figure 21 plots the slope coefficients on the log of aggregate supply

across the five ”Use” types of food. Aggregate supply is given by both the previous 30 day aggregate

supply and supply being auctioned that period. Coefficients are standardised, so that a one standard

deviation increase in log 30 day supply of ”Ingredients” decreases winning bids by 0.007 standard

deviations. Estimated parameters are typically very small, and only significantly negative for the

30 day supply of Meals, Ingredients, and Snacks. I estimate a significantly positive and small (0.006

standard deviations) effect for contemporaneous supply of condiments, however this is difficult to

interpret. It is possible that the small estimated coefficients are due to the extremely coarse food

groupings I have used.69 In practice it is unlikely that food banks keep track of the food supply

from particularly detailed food groups. However, this remains a weakness of this analysis.

69however in a previous version of the model I estimated category specific slopes, and found
similarly small effects.
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Figure 19: Category Specific First Stage Parameters

Category Shape Scale Scale (other) Maroon Loads Threshold 1 Threshold 2

Baby 0.0886 3100 -1,200 -846 -10,500 -3,020 -175
(0.0659,0.113) (2790,3410) (-1,970,-173) (-1,520,-239) (-17,700,-5,890) (-3,230,-2,800) (-216,-136)

Bev 0.0174 2170 -370 -756 -5,200 -3,470 -320
(-0.00205,0.0388) (2080,2280) (-812,130) (-2,470,835) (-5,880,-4,590) (-4,090,-2,850) (-439,-203)

Baked 0.0886 2160 240 -846 -10,400 -3,020 -175
(0.0659,0.113) (1850,2460) (-728,1370) (-1,520,-239) (-16,100,-6,040) (-3,230,-2,800) (-216,-136)

Cereal 0.133 4560 -520 -2,600 -2,750 -3,020 -175
(0.0935,0.175) (4320,4810) (-886,-179) (-4,710,-486) (-4,700,-1,290) (-3,230,-2,800) (-216,-136)

Condiment 0.342 3660 -226 623 -9,140 -3,020 -175
(0.277,0.417) (3380,3910) (-916,569) (-1,070,2370) (-11,800,-6,750) (-3,230,-2,800) (-216,-136)

Dairy -0.0421 2340 -224 -846 -5,600 -2,680 -186
(-0.0726,-0.00883) (2220,2480) (-945,817) (-1,520,-239) (-6,470,-4,660) (-3,410,-1,940) (-317,-64.5)

Fresh 0.0886 576 -3.88 -124 -2,940 -564 -474
(0.0659,0.113) (516,635) (-73.8,63.4) (-1,440,1230) (-3,290,-2,600) (-1,020,-122) (-600,-356)

Frozen 0.0204 2560 1110 -1,390 -5,930 -3,020 -175
(-0.0268,0.0762) (2390,2780) (-791,3930) (-3,030,225) (-9,350,-3,500) (-3,230,-2,800) (-216,-136)

H/B 0.0886 3570 -1,460 -846 -5,720 -3,020 -175
(0.0659,0.113) (3290,3900) (-1,890,-977) (-1,520,-239) (-9,310,-2,590) (-3,230,-2,800) (-216,-136)

Meals 0.149 4020 -587 -846 -4,670 -3,020 -175
(0.113,0.194) (3830,4220) (-1,090,-49.4) (-1,520,-239) (-5,970,-3,480) (-3,230,-2,800) (-216,-136)

Meat 0.0886 4360 1550 1240 -10,400 -3,020 -175
(0.0659,0.113) (3930,4840) (577,2660) (-1,260,3660) (-15,300,-6,530) (-3,230,-2,800) (-216,-136)

Cleaning 0.173 2730 137 2110 -4,730 -3,020 -175
(0.116,0.235) (2520,2970) (-393,692) (426,3690) (-6,190,-3,500) (-3,230,-2,800) (-216,-136)

Pasta 0.0886 5730 -612 -846 -6,790 -3,020 -175
(0.0659,0.113) (4360,7390) (-2,600,1090) (-1,520,-239) (-11,900,-2,490) (-3,230,-2,800) (-216,-136)

Snack 0.0374 2220 -353 -767 -6,680 -3,830 -239
(0.0211,0.057) (2160,2310) (-572,-119) (-2,230,653) (-7,980,-5,590) (-4,490,-3,210) (-331,-147)

Vegetables 0.0886 3540 -374 1230 -2,870 -3,020 -175
(0.0659,0.113) (3260,3850) (-1,070,409) (-761,3090) (-5,150,-1,310) (-3,230,-2,800) (-216,-136)

Note: 95% Credible Intervals are given in parentheses.

Figure 19 column 4 displays the coefficients on maroon dummy variables. Parameters are con-

strained to be equal for categories with fewer than 50 maroon loads. Importantly, Maroon loads

have a reservation price of zero, rather than -2000. The model I estimate focuses on difference

from the reservation price, rather than raw winning bids. Therefore, with the exception of Fresh

produce (which also has a reservation price of 0), I estimate that winning bids on maroon loads

are systematically higher than winning bids on non-maroon loads when estimated parameters are

significantly greater than -2000. On average Maroon loads attract winning bids around 1000 shares

higher than non-maroon loads. Figure 19 column 5 shows the linear slope coefficient on the num-

ber of homogenous loads auctioned simultaneously. Estimates are all significantly below zero, so

that when multiple loads attract lower bids than single loads. This is sensible, since there is less

competition for each load.

For the 8 different economic regions (and Canada), only loads from the ”MidEast” region attracts

significantly different winning bids, but the effect is small at around 0.001 standard deviations.

Previously auctioned loads attract significantly lower winning bids, with a point estimate of -11,700

(-12,400,-11,000), around a third of a standard deviation. Loads that contain different categories

of food attract lower bids, but the magnitude is small (less than 0.001 standard deviations), and

significantly different from zero only when the lot contains four distinct types of food. Loads with free

delivery, additional notes, or additionally shelf stable products do not attract significantly different

winning bids. Finally, loads with restrictions on where they can be sent, or how the food must be

picked up attract significantly lower winning bids, with a point estimate of -3,490 (-4,360,-2,700).
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Figure 20: Estimated Subcategory Fixed Effects

Note: Plot shows coefficients on location shifting subcategory specific dummy variables. Points give posterior means,

and 95% Credible Intervals are given by the shaded lines. To interpret magnitudes in terms of standard deviations

of winning bids, one must multiply by the associated shape parameter, and divide by the associated scale.

I.1.4 Threshold Parameters

Figure 19 column 6 gives the estimated threshold parameters Rc. These are all estimated to be

far from zero, indicative of the high likelihood of observing winning bids at the reservation price.

Column 7 gives the other threshold parameters R̄c. To interpret the parameters in terms of the

excess mass just above the reservation price, they must be divided by the standard deviations

(around 30,000), so that on average there is around 0.5% more mass just above the reservation

price than expected. The estimated exponential parameter is 0.395 (0.343,0.462), so that the model

predominantly rationalises bids within 5 shares of the reservation price in this way.

I.2 Second Stage

I.2.1 Lot Specific Pay-off Parameters

Figure 22 panel (A) plots food banks’ estimated transportation costs, measured in consumer surplus.

Coefficients cannot be interpreted as willingness to pays as they are not divided by marginal value

of wealth (λi). Coefficients are positive, suggesting transportation is costly, and we see significant

differences across food banks. Figure 22 panel (B) plots the estimated log marginal value of wealth
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Figure 21: Estimated Effect of Aggregate Supply on prices

Note: Plot shows coefficients on aggregate supply, by food use for both daily supply and the previous month’s supply.

Points give posterior means, and 95% Credible Intervals are given by the shaded lines. In non-standardised terms at

the mean of 1600 tons of meals (food that can be consumed as a meal in itself) per month, an increase in the previous

30 day supply of meals by 1000 tons, around 50 loads, decreases the expected winning bid by around 500 shares.

across food banks, λ̂i. Estimates above zero are relatively more budget constrained than the median

food bank, and I estimate significant variation in these parameters. This suggests that shares are

not allocated correctly, since to achieve efficiency the social planner would equate marginal values

of wealth.70

Figure 23 panel (A) plots the estimated standard deviations of the lot specific idiosyncratic pay-

offs across category combinations. These tend to be between 10,000 and 30,000, which is significantly

higher than the observed standard deviation of bids (around 3,000). They are large due in part due

to the much larger variance of bids plus the markup term bl + Γl(bl)
∇bΓl(bl) , and also to rationalise the

large degree of censoring. If only 2% of bids are observed, then the observed variation is only the

variation in the far right hand tail.

70Note that identification of these parameters, which comes from variation in the variance of
bids across food banks, strongly rests on the assumption that the lot specific payoff has the same
variance across food banks. Therefore it is not possible to determine whether variation in these
parameters is actually due to unmodelled variation in lot specific variances.
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I.2.2 Combinatorial Pay-off Parameters

Figure 23 panel (B) plots the estimated Φ parameters, essentially how k(si, s0) vary with stocks

of subcategories. Estimated parameters are strongly correlated with with the estimated first stage

subcategory parameters plotted in figure 20 (R2 = 0.82)

Figure 22: Estimated distance and marginal value of wealth parameters

(A) (B)

Note: Plot shows posterior means and 95% credible intervals of estimated distance coefficients (in km, panel (A))

and log marginal value of wealth (panel B). The Marginal value of wealth is normalised to 1 for the Type 1 food

banks with median consumption.

I.3 Third Stage

I.4 Type 2s

I.4.1 Unobserved State

Figure 24 panel (A) presents estimated mean net donations for Type 2 food banks. Estimates are

generally greater (less negative) than for Type 1 food banks. This is to be expected given these food

banks typically win less food, suggesting they need less food in the first place. Likewise Figure 24

panel (B) presents estimated standard deviations of net donations for Type 2 food banks. Estimates

are generally smaller than for Type 1 food banks. This is partly surprising, since one might expect

that each period larger food banks give out a more predictable amount to their clients, and receive a

more predictable amount from local donors. This is essentially a law of large numbers given Type 1

food banks are expected to give out and receive more food than Type 2 food banks. However, Type

2 food banks are not necessarily smaller than Type 1s, and many have larger Goal Factors. The

fact they rely on the Choice System less is likely due to having many local donors, which may lead
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Figure 23: Estimated lot specific standard deviations and subcategory parameters
(Φ)

(A) (B)

Note: Plot shows posterior means and 95% credible intervals of estimated standard deviations of υilt (panel A), and

of estimated Φ subcategory pay-off parameters (panel B). For panel (A) The x-axis shows different combinations of

categories included in the same lot, as each of the 59 most common unique combinations receives their own parameter.

More common combinations appear further to the right. The furthest right parameter corresponds to the remaining

423 observed unique combinations, which make up 7% of the data. For panel (B) The scale can be interpreted as

consumer surplus, measured in shares. A coefficient of 1 can be interpreted as every addition pound of food increasing

consumer surplus by one share.

to them receiving a more constant supply of local donations over time. It is also possible that these

results are driven mechanically by my priors (as food banks who win more food may mechanically

have a larger variance of their winnings), making it important that my priors about the variance

are informative.

I.4.2 Lot Specific Payoff

Figure 25 panel (A) plots the distance costs for Type 2 food banks. Some of the estimated coefficients

are in the ranges of the type 1 food banks, these are likely the large Type 2 food banks with access

to many local donors. Mostly, Type 2 food banks have much higher distance costs. Figure 25 panel

(B) plots the log of the estimated marginal value of wealth, which is still measured relative to the

median Type 1 food bank. Type 2 food banks are estimated to generally have much lower estimates,

suggesting that shares are not as valuable to Type 2 food banks as they are to Type 1 food banks.

This is unsurprising given that Type 2 food banks are known to already need less food, either due

to access to local donors, or as they have a smaller amount of poverty in their local area.
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Figure 24: Estimated unobserved state parameters (Type 2)

(A) (B)

Note: The figure plots posterior means for the mean and standard deviations of net local donations,

as well as 95% credible intervals. Results are sorted according to the estimates for the Dried storage

type. The plot excludes the ‘non-food’ type, to improve graphability.

I.4.3 Combinatorial Payoff

Figure 26 plots the distribution of Type 2 food banks’ willingness to pays for a single lot from each

storage type, given stocks of zero. Estimates are most often negative, suggesting that storing food is

costly. Estimates are generally higher (lower storage costs) for Type 2 food banks than Type 1 food

banks. This is most likely because the state is normalised to zero for the first date in my sample

period. The zero, normalised, state is likely higher for Type 1 food banks as they typically win more

food. Therefore it is sensible that these food banks are more capacity constrained to begin with.

I.5 Diagnostics

This sub-Appendix reports Gelman-Rubin statistics, allowing us to assess model convergence. I

follow the approach to constructing the test statistics laid out in Gelman et al. (1995). Figure 27

reports the results of this analysis. For each set of parameters I report the proportion of statistics

below the recommended cutoffs of 1.2 and 1.1. I report results for both types of food banks, except

in cases when the relevant parameters are the same for both types.

Broadly I have evidence of convergence, though not as strong as one might hope for the second

stage parameters.

For the first stage parameters every parameter is found to converge except one of the ‘other

subcategory’ scale parameters (likely due to a lack of observations). For the parameters of the

second stage evidence of convergence is less strong, though only when we focus on the more stringent

cutoffs. The lack of convergence is clustered within the four least regularly bidding Type 1 food

banks, and the ten least regularly bidding Type 2 food banks. Each individual food bank has a
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Figure 25: Estimated distance and marginal value of wealth parameters (Type 2)

(A) (B)

Note: Plot shows posterior means and 95% credible intervals of estimated distance coefficients (in km, panel (A))

and log marginal value of wealth (panel B). The Marginal value of wealth is normalised to 1 for the Type 1 food

banks with median consumption.

relatively small effect on my counterfactuals (with the exception of the 5 largest food banks, all of

whom converged). Therefore the effect on my main results of this non-convergence is likely to be

very minor. For the sake of posterity, I now discuss this lack of convergence in more detail.

My sampler likely did not fully converge to the target distribution for certain parameters. Con-

vergence was already expected to be slow due to the large degree of censoring, and the 300,000

iterations were likely insufficient to achieve full convergence for every parameter.71

I.6 Fit

I.6.1 First Stage

Figure 28 plots the estimated and empirical probability a food bank wins a lot given their bid,

where bids are measured in distance from the reservation price. The estimation drops the first 60

days, and the final 150 days, and then randomly samples 95% of the remaining data. The other 5%

is used as a validation dataset. Probabilities are plotted by taking an expectation over covariates.

The discontinuity in probability occurring at zero is due to the non-negligible probability of ties at

the reservation price.

71In future more iterations should be used. In particular, just as I presently only sample beliefs
every 10th iteration due to computational cost, in future I will only run the Carter-Kohn algorithm
(drawing stocks from their posterior) every 10th iteration. These Carter-Kohn steps were by far the
most computationally intensive, taking around 90% of all the computation time. This will allow me
to run the sampler for around five times as many iterations in the same space of time. This should
improve convergence by allowing me to overcome the large degree of censoring.
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Figure 26: Estimates of Ψi (Type 2)

Note: Figure plots posterior mean equilibrium willingness to pay for a 40, 000 load for each storage type. Bars

give the 95% credible intervals. Estimates are ordered according to the estimates for Dried loads. The plot excludes

estimates for non-food storage type. WTPs are evaluated when stocks are zero.

The model does a good job of matching the probability of winning at the reservation price, and

just above it. The fit worsens around zero (typically 2000 shares above the reservation price) due

to excess mass at zero, and hence excess cumulative probability above zero. The model is unable to

rationalise food banks’ bids being anchored around zero. However this inaccuracy is not large, even

if it is statistically significant - the vertical distance between the two lines never exceeds 0.05.

I.6.2 Second Stage

Figure 29 presents several observed moments, comparing them to simulated moments. For the

simulated moments I present the posterior mean moment, as well as the 2.5th and 97.5th percentiles.

In sample moments are calculated on the training sample (in-sample), which cuts off the first 60

and final 150 days. The validation sample (out-of-sample) uses only the final 150 days.

Most of the moments I consider are self-explanatory, except for the number of lots won, relative

to the observed number. For each simulation this takes the number of lots a food bank wins,

dividing this by the number of lots they were observed winning. I then consider the average of

this proportion across food banks. It mechanically equals one in the observed data. This moment

is typically fit quite well by the model, with both Type 1 and Type 2 food banks winning similar

amounts of food in y simulations compared to the true data. Type 2 food banks perhaps win too
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Figure 27: Gelman-Rubin Convergence Statistics

Type 1 food banks Type 2 food banks

Parameters Prop < 1.1 Prop < 1.2 Prop < 1.1 Prop < 1.2

Γ 0.996 1 - -

µi 0.947 0.976 1 1

Σi 0.9 0.935 1 1

Φ 0.976 1 - -

λi 0.909 0.97 0.784 0.943

σl 0.933 1 - -

Distance 0.971 1 0.966 1

ψi 0.902 0.975 0.92 0.986

ψ 1 1 - -

Σψ 1 1 - -

many lots and Type 1 food banks perhaps slightly too few. This is likely due to the simulated over

bidding of Type 2 food banks. This moment is important because it shows that the model correctly

predicts food banks equilibrium allocations, even if it does not correctly predict bidding behaviour.

A similar pattern is seen when we consider equilibrium expenditure (essentially weighting winnings

by value) as well as food won by type of food.

Model fit, in terms of bidding behaviour, is poor for Type 2 food banks. They are predicted

bidding more often than they actually do, and bidding too aggressively conditional on bidding. This

is typically due to parameters failing to converge properly. In particular, the estimated marginal

value of wealth for these food banks are far too low. Fortunately given that these food banks

consume a relatively small proportion of total food, and this is predicted well by the model, these

food banks have a small total impact on welfare, and so these inaccuracies will not majorly impact

my counterfactuals.

The model fits much better for Type 1 food banks, though still estimates them bidding too

aggressively, with average bids around 70% larger than observed. However, relative to the already

large standard deviation of bids, this is not major. These inaccuracies seem to be caused by sim-

ulation error, as for each simulation I must numerically find optimum entry and bidding decisions,

for which I use a simple hill-climbing heuristic that need not necessarily find a global optimum.
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Figure 28: First Stage Fit, actual vs simulated

(A) (B)

Note: probability of winning given bid, i.e. cdf of winning bids. discont due to ties. simulated values from estimated

distribution vs empirical distribution. averaged over covariates.

J Robustness

This Appendix investigates how robust my results are to certain key assumptions and simplifications

made in the main text. Robustness exercises are split across the three stages of my estimation

procedure in Appendices J.1, J.2, and J.3 respectively.

J.1 First Stage

In this appendix I consider how robust is estimation to the specific assumptions I make about

equilibrium beliefs. At present, I focus on the assumptions made on beliefs in Assumption 4.

Specifically, that every food bank faces the same distribution of maximum rival bids, and that

beliefs are not a function of individual food banks’ states, but rather aggregate states. In Appendix

J.1.3 I consider the assumption that winning bids are conditionally independent across auctions.

J.1.1 Food bank Specific Beliefs

Assumption 4 part (v) imposed that Γi = Γ, so that every food bank is assumed to face the

same distribution of rival bids. This simplification allowed me to estimate Γ on the distribution

of winning bids only. I can test this assumption, testing whether the distribution of food bank i’s

rival’s highest bids is significantly different from the distribution of winning bids. In practice, this

involves replacing food bank i’s winning bids with the second highest bid in each of these auctions.

This permits a simple hypothesis test for food bank i: We construct this alternative dataset and

consider whether the estimated Γi from this dataset is significantly different from the estimated Γ

constructed from winning bids only. This can be done using a simple Score Test.
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Figure 29: Estimation Moments: Observed vs Simulated

In-Sample Out-of-Sample

Moment FB Type Observed Mean p2.5 p97.5 Observed Mean p2.5 p97.5

Average No. bids 1 1.33 1.32 1.25 1.43 0.899 1.08 0.938 1.22

(per period) 2 0.252 0.596 0.554 0.633 0.146 0.525 0.476 0.57

P ≥ 1 bids 1 0.457 0.488 0.472 0.504 0.344 0.437 0.412 0.455

(per period) 2 0.157 0.363 0.345 0.38 0.0997 0.33 0.307 0.346

Mean bid 1 1640 2560 2260 2770 1010 2710 2350 3050

(given enter) 2 2590 6120 5600 6640 1590 6480 5790 7190

Std of bids 1 3890 4600 4420 4790 3020 4540 4290 4720

(given enter) 2 5290 8040 7380 8780 3260 7880 7080 8810

No. of lots won 1 1 0.829 0.562 1.16 1 0.887 0.429 1.53

relative to observed 2 1 1.54 0.979 2.32 1 2.62 1.04 6.02

Note: Moments are calculated for Type 1 and Type 2 food banks separately. ‘Out of sample’ refers to the final 150

days which are dropped from estimation. The final set of moments considers the number of lots won by each food

bank in each simulation, and how this compares to the number of lots actually won. For each food bank and each

simulation I consider the ratio of lots actually won and to the lots won in the simulation. Values closer to 1 are closer

to the observed data. Values above 1 have food banks winning too many lots on average.

In figure 30 panel (A) I present the distribution of score test statistics across food banks. Under

the null hypothesis these statistics take a χ2 distribution with 268 degrees of freedom (the number

of first stage parameters). None of these hypothesis tests can reject the null hypothesis at the 10%

significance level.

J.1.2 Dependence on Aggregate Supply

Assumption 4 part (v) also requires that beliefs do not depend on any individual food banks’ state,

and instead only depend on aggregate statistics, such as the aggregate supply of various types of

food. The argument is that equilibrium is sufficiently competitive that no individual food bank’s

behaviour is able to significantly shift the distribution of equilibrium winning bids. If this is the

case, then no individual food bank’s state will be able to significantly shift this distribution either.

To test this assumption I consider whether any food bank has an individually significant effect

on the distribution of equilibrium winning bids. The results presented in Appendix J.1.1 act as

evidence in favour of this hypothesis, essentially presenting the distribution of equilibrium winning

bids when each food bank is ‘removed’ from the system in turn. To go further, I can also consider

whether the distribution of equilibrium winning bids changes when data from food bank i and the

auctions they won are removed from the system. If food bank i has a significant effect on the

distribution of winning bids, we would expect that the distribution of winning bids is different when

we drop all the data from food bank i. In figure 30 panel (B) I present the distribution of score test

statistics across food banks. Under the null hypothesis these statistics take a χ2 distribution with

268 degrees of freedom (the number of first stage parameters). None of these hypothesis tests can

reject the null hypothesis at the 10% significance level.
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Figure 30: Robustness: Stage 1

(A) (B)

Note: The figure plots Score Test statistics from two robustness checks. Panel (A) relaxes the restriction that

every food bank has the same equilibrium beliefs, while panel (B) tests whether any individual food bank’s bidding

behaviour has a significant effect on the distribution of winning bids.

J.1.3 Independence of Winning Bids

In this Appendix I investigate the assumption that winning bids within a period are conditionally

independent across auctions. This assumption is necessary to ensure the joint probabilities of

combinatorial outcomes P (bt,dt|st) can be written as products of the marginal distributions. Given

the linear demand, or quadratic pseudo-static payoff parametrisation I make, I only require that

winning bids are pairwise independent.

I investigate the validity of this assumption by investigating the degree of pairwise correlation in

winning bids within a period. While a lack of correlation is not sufficient to infer independence, it

at least suggests that one winning bid is not informative of another winning bid. This ensures that

food banks’ beliefs about joint probabilities of pairwise outcomes should be close to the product of

the marginal win probabilities, meaning that errors from this misspecification are expected to be

minor. Importantly, I only need to test for the presence of conditional correlation. Two winning

bids are allowed to be conditionally correlated (conditional on covariates), as it is assume that food

banks form beliefs conditional on the state. Correlation in winning bids is most likely to arise from

the complementarity terms Ψ that also creates correlation in food banks’ bids across different lots

(given I assumed υilt are uncorrelated across l). For example, since we expect lots to be substitutes

a food bank’s bids are likely to exhibit negative correlation (conditional on the state). Therefore we

might also expect winning bids to exhibit negative correlation.

Writing b̄lt for the winning bid on lot l at time t I investigate correlation between winning bids

using the following regression specification:
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b̄lt = β1b̄l′t + β2xlt + β3xl′t + β4s0
t + εlt

xlt give lot specific covariates, using the covariates included in the first stage of the estimation

procedure such as subcategory fixed effects. s0
t give time specific common state variables that do not

vary across lots, just as in the first estimation stage. I include every pair of auctions (l, l′) that occur

simultaneously, giving me around 800, 000 observations (essentially including each pair twice, once

on each side of the regression). Under the null hypothesis of independence β1 should equal zero.

However, this specification imposes that the relationship between every pair of winning bids is the

same. One might expect negative correlation between substitutes and positive correlation between

complements. To allow for differential correlations I also consider a specification that interacts b̄l′t

with all three sets of covariates, allowing the correlation to depend on observable characteristics of

the lots. I also consider a specification that includes triple interactions between b̄l′t, xlt, and xmt.

This predominantly involves including dummy variables for whether both lots come from the same

subcategory, the same region, etc.

I consider statistical significance of the b̄l′t coefficients using asymptotic F-tests. However, it is

also worthwhile to consider how much variation in b̄lt b̄l′t is able to explain. If b̄l′t has very little

explanatory power, then the extent of the dependence is expected to be minor. This means any

departure from independence is unlikely to cause much inaccuracy in my results, since the true joint

probabilities are expected to be very close to the product of the marginal probabilities.

Results are presented in Figure 31. I can reject the null hypothesis of independence at the

1% significance level in all of my specifications. Therefore I have evidence that the independence

assumption is invalid. However, as is evident from examining the R2 values, the degree of dependence

is extremely small. The covariates alone account for 41.2% of the variation in winning bids. Including

the b̄l′t interactions is then only able to explain an additional 0.3% of the variation in winning bids.

This suggests that winning bids are very close to being independent, even though we can reject

independence. Therefore while I have found this independence assumption to be invalid, I have also

found that it is likely to be a very good approximation to food banks’ beliefs. This analysis does

not presently account for censoring of winning bids at the reservation price, but will do in future.

One final point worth considering is how this simplification might impact my results. One

difficulty with simultaneous auctions is that it makes it difficult for food banks to win precise

numbers of loads. They might bid on two loads of cereal wanting precisely one, but there is a

non-negligible risk they win both or neither. The more dependence there is between winning bids,

the more information the food bank has about how they should bid, giving them even more control

over which lots they win. In the cereal example, if winning bids are negatively correlated, the food

bank knows they can place two middling bids and they will likely win precisely one lot. If they are

positively correlated they know they should place one high and one low (if at all) bid. Therefore,

this assumption is expected to bias my results against the Choice System.
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Figure 31: Robustness: Independence of Winning Bids

Specification Covariates F test df p-value R2

b̄l′t 1 0 0.08734
Covariates only X 0.4121
b̄l′t X 1 0 0.4124
b̄l′t × (xl′t,xlt, s0t) X 457 0 0.414
b̄l′t × (xl′t,xlt, s0t, [xl′t × xlt]) X 681 0 0.4153

Note: The F test degrees of freedom and p-value refer to the hypothesis tests that all coefficients on

b̄l′t are equal to zero, where the degrees of freedom gives the number of coefficients being considered.

J.2 Second Stage

I consider four alternate model specifications for the second stage. These are designed to test the

model’s robustness to relaxing key simplifications made in the main model. In Appendix J.2.1 I

allow the value function to depend on common state variables. In Appendix J.2.2 I account for

endogeneity in the observation equation using an control function procedure. In Appendix J.2.3 I

consider robustness to the assumption of normally distributed lot specific payoffs by allowing the

lot specific idiosyncratic payoff to follow a normal-inverse-gamma distribution. In Appendix J.2.4

I consider how the simplification to only consider data from 25 auctions each period impacts my

results, by estimating the model using 50 auctions from each period.

J.2.1 Incorporating the Common State

In general food banks’ continuation values depend on the common state variables, which contain

information about future prices. Common state variables are captured by the demand index esti-

mated in the first stage, mapping common states onto parameters of the distribution of winning

bids.

In order to allow continuation values to depend on common states, when estimating the pseudo-

static payoff function k in the second estimation step, it is necessary to allow k to vary with the

demand index. Importantly the index must be interacted with food bank specific state variables, so

that the marginal payoff also depends on the index. Otherwise dependence on the index will not be

identified from bidding behaviour alone. I introduce the demand index by specifying k as follows:

k(si, s
0) = Φ(I +D0)shi + sgTi Ψis

g
i

Where D0 is a diagonal matrix with entry D0
hh =

∑
u δud

0uI[h ∈ u], where I[h ∈ u] is a dummy

variable for whether subcategory h has usage type u. d0u is the demand index for food from usage

type u, and δu are parameters to be estimated. These parameters describe how strongly bidding

behaviour changes given changes in aggregate supply. For example, when supply is high, and so d0u
t

is low, winning bids are expected to be low. If supply is also positively correlated over time, the

opportunity cost from losing a lot today is low, as winning bids are also likely to be low in future.
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Therefore bidding will be even less aggressive today, and so we expect δu > 0. This specification is

natural - if there is dependence on common states, we would expect to see evidence of it to show

up in a linear term. I interact the index with the subcategory stock term, rather than the storage

type term, because the subcategory term reflects a food banks’ ‘wants’, while the storage term is

intended to reflect the costs that the food bank must put up with. This is relevant because the

index affects how easily the food bank can win the types of food it wants, on behalf of their clients.

Different sized food banks, with different budgets and storage capacities, are expected to respond

differently to variation in common states. For example, a food bank that is not heavily reliant on

the Choice System for their staples is unlikely to be responsive to common states. Therefore I

allow the δ parameters to vary across food banks, but again employ a bayesian hierarchical model

to ensure a degree of shrinkage for food banks for whom identifying variation is scarce. I assume

that δi ∼ N(δ,Σδ), where priors for N(δ,Σδ) are weak normal-inverse-wishart. The parameters are

identified using variation in the demand indices, which arise from variation in the common states,

and seeing how this translates into variation in bidding behaviour.

In figure 32 panel (A) I plot estimates of δu across food banks. None are significant at the 5%

significance level. This is predominantly caused by the lack of variation in the demand indices - as

we saw in Figure 21 winning bids do not vary much with variation in the common state variables.

This explains the extremely large credible intervals relative to the scale: if δg = 1 this means that

a one unit increase in dgt (associated with a one share expected increase in the winning bids) is

associated with a Φzhtl unit increase in bids.

Therefore we have evidence that food banks’ continuation values also do not vary with common

state variables. Consequently, when evaluating maximised expected payoffs and the ex-ante value

function in the third estimation step, we do not need to explicitly consider dependence on the

common states, as this will not impact estimates of the flow payoffs j backed out in the final step.

J.2.2 Endogeneity of the Inverse Bid System

In this appendix I consider the endogeneity of the observation equation, caused by non-additivities

across lots. In essence, I re-estimate the second stage of my estimation procedure using a control

function approach. The observation equation is given by:

λiyilt = Φzhtl + zgTtl Ψi(z
g
tl + 2sgit + 2

∑
m 6=l

Γm(bitm)zgtm) + υilt

Given that this step is essentially estimated using a bayesian regression, estimation requires that

the error term υilt is independent of the regressors. In general there exists a dependency between

υilt and bitm (for m 6= l), because optimum bids (and entry decisions) are a function of every lot

specific payoff. That said, we have reason to think this dependency might be small, since typically

Γm(bitm) will depend much more strongly on things other than υilt. However, allowing for this

endogeneity is relatively easy. The endogenous regressor is zgtl(z
g
tl + 2sgit + 2

∑
m6=l Γm(bitm)zgtm)T ,

and there exists an obvious instrument for this regressor: zgtl(z
g
tl + 2sgit)

T . This is the same type of

instrument used in Altmann (2022). What makes this instrumental variable procedure even easier
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is that our first stage is actually known, and given by the structure of the model.

Estimation is done using a control function approach. The basic idea is that we have a regression

model along the following lines:

yt = xTt β + ut

xt = zt + vt

&

ut|vt ∼ N(vtρ, σ
2)

ut|zt ∼ N(0, σ2)

(19)

This is a standard case of endogeneity with an available instrument, except with a known first

stage. In this setting β can be estimated consistently using the regression equation:

yt = xTt β + vTt ρ+ et

Because yt|xt,vt ∼ N(xTt β+ vTt ρ, σ
2). In my setting we specify the observation equation as we did

previously, but include zgtl(2
∑
m 6=l Γm(bitm)zgtm)T as an additional regressor. The coefficient of this

regressor is essentially an estimate of the endogeneity. I specify weak normal priors for ρi.

In practice, the endogeneity is unlikely to be linear. However this remains a useful starting

point for two reasons. First, even when the endogeneity is non-linear, so that E[ut|vt] = f(vt), the

posterior distribution for β, marginalised over ρ, remains correct. This is because, conditional on

vt, xt is independent of any non-linear functions of vt that remain in the error term. Second, if

there are non-linearities and the effect of endogeneity on xt is large, the linear term should still pick

up evidence of endogeneity.

Estimation remains as it was in the main text, except that before sampling ψi parameters, I form

the conditional joint posterior distribution for (ψi, ρi), before marginalising over ρi, and sampling

ψi from the marginal posterior for ψi.

In Figure 32 panel (B) I present posterior means of ρi across food banks. Estimates are presented

on the same scale as the results from Figure 9. Only 16% of estimates are individually significant

at the 5% significance level. Furthermore, the estimated magnitudes of the bias are small - between

2% and 8% of the relevant entries of Ψi.

J.2.3 Normal-Inverse-Gamma Idiosyncratic Payoff

In this appendix I relax the assumption that the lot specific idiosyncratic terms υilt are normally

distributed. Instead, I allow for the possibility that they take a normal inverse-gamma distribution:

υilt ∼ N(0, σ2
l Uilt) where Uilt ∼ IG(α, α)

This distribution has heavier tails than the normal distribution. The distribution can be inter-

preted as taking into account unobserved variation in lot specific attributes that affect the variance

of the payoff. For example, I do not take into account different varieties of apples. The quality of

some types of apples may be significantly more variable than other.

The procedure described shortly can also be extended to net donations x. However the assump-

tion that net donations are normally distributed is significantly more reasonable, given that these
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Figure 32: Robustness: Stage 2 (1)

(A) (B)

Note: The figure plots deviation statistics from two robustness checks. Panel (A) plots posterior means and 95%

credible intervals of the coefficients on the demand indices across food usage types. To interpret the scale of the

coefficients, if δg = 1 this means that a one unit increase in dgt (associated with a one share expected increase in the

winning bids) is associated with a Φzhtl unit increase in bids. We expect δs to be small and positive. Panel (B) plots

posterior means and 95% credible intervals of the ρ parameters, which can be interpreted as estimates of the bias in

the Ψi parameters caused by endogeneity of the observation equation. The estimated ρs are presented on the same

scale as estimates of Ψ presented in Figure 9.

net donations are the sum of many local donations and many loads sent out to food pantries.

Sampling υilts from their censored distributions and sampling sgit using the Carter-Kohn al-

gorithm both rest strongly on the normal distribution assumption. In particular, the posterior

distributions of sgit is intractable when υilt is non-normal. However, conditional on {Uilt}ILT , we

have normality again. Therefore I use an additional data augmentation step in which I sample

{Uilt}ITL conditional on {υilt}ITL, α, and σ2
l . Given known difficulties associated with estimating

the shape parameters of these types of distributions I fix α = 5, ensuring the first four moments of

the distribution exist. The σl parameters are just a rescaling of those presented in the main text.

This data augmentation step is performed using the following conditional posterior:72

Uilt|υilt, σ2
l , α ∼ scaled-inv-χ2(2α+ 1,

2α+
υ2
ilt

σ2
l

2α+ 1
)

In Figure 33 I present the results of Wald tests from different groups of parameters, considering

how this alteration to the model changes the estimated model parameters. I can reject that the

72This result comes from the fact that the marginal distribution of the normal inverse-gamma
distribution for υilt only is a t-distribution with 2α degrees of freedom. I then use the standard
result that t-distributions can be written as a scale mixture of normals, for which the conditional
posterior is readily available.
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parameters have the same posterior means for an overall Wald test. However it is useful to see

where the main differences are coming from. I find that we can only reject the null hypothesis that

posterior means are equal for the lot specific variance, and marginal value of wealth parameters.73

Estimated variance parameters are on average lower than those form the baseline specification, and

λi parameters higher. This is because this specification does not need an excessively large variance

in order to rationalise the heavy right tail of bids. In future I will investigate how these differences

lead to different welfare effects from my simulations.

Figure 33: Robustness tests, differences in posterior means

Alternate Statistic Parameters

Model Ψi Φ λi σl Distance µi Σi

NIG υilt χ2 570 10.2 85.2 97.1 4.24 1.91 37.7

p-val 0.0344 1 1.7e-06 0.00172 1 1 1

50 auctions χ2 2490 31.8 51.9 314 8.52 0.761 19

p-val 0 1 0.0192 0 1 1 1

Note: This table presents test statistics and p-values from Wald tests for differences in posterior means across several

alternate model specifications. Tests are performed separately across groups of parameters. The test statistic has an

asymptotic chi2 distribution with degrees of freedom given by the number of parameters of that type.

J.2.4 Accounting for Additional Non-Entered Lots

In the main text I estimated the model using only 25 unique auctions held each day. Although

no food bank was every observed placing more than 25 bids, on around 50% of days there were

more than 25 unique auctions. As many as 87 auctions unique auctions were observed being held

simultaneously in my data. This simplification risks introducing bias as it does not recognise food

banks’ decisions not to bid on these additional lots. This bias is similar to the possible bias in a

standard tobit model from simply dropping half the censored observations. However, given that food

banks rarely place more than 10 bids each period, so that I am already taking into account their

decision not to bid on 15 lots, these additional observations are unlikely to yield much additional

information. The simplification was made to speed up the convergence of my Gibbs Sampler, as the

large degree of censoring will typically harm this.

To investigate robustness to this decision I estimate the model using data on 50 auctions held

each day. To get around convergence problems I begin estimation from the final iteration(s) of the

73I can also reject the hypothesis for the Ψi parameters at the 5% significance level, however this
appears to come from a small number of food banks, and preliminary investigation suggests it may
relate to non-convergence of their parameters.
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main model. I only observe days with more than 50 auctions on 5% of days. If I find that my

results are generally robust to doubling the number of auctions considered each day, it is unlikely

that including the remaining auctions will change the results either.

In Figure 33 I present the results of Wald tests from different groups of parameters, considering

how this alteration to the model changes the estimated model parameters. I can reject that the

parameters have the same posterior means for an overall Wald test. I can also reject that posterior

means are equal for the pseudo-static payoff function parameters Ψi, marginal values of wealth λi,

and the lot specific variances. I need a larger variance to rationalise the lower probability of bidding

on any given auction. For the Ψi parameters, as expected, a number of them failed to converge

properly. This warrants additional investigation in future.

J.3 Third Stage

J.3.1 Quadratic Approximation

After evaluating the ex-ante value function across a 3.2 × 106 grid of states, I take a quadratic

approximation across this grid, weighted by each states’ estimated relevance. This is necessary

because I must evaluate the ex-ante value function for each food bank and each draw, and I am

unable to save all 34× 1000 grids. A legitimate concern is whether this approximation is accurate.

Figure 34 panel (A) presents a histogram of the R2s from forming this approximation. 100% of

these value lie between 0.99 and 1. The fit is strong because of the quadratic term which appears

in equation 12.

As an additional robustness test I consider whether fitting higher order polynomials improves

the fit significantly. I consider up to a 4th order polynomial. Figure 34 panel (B) plots the results

from this analysis. None of these test statistics exceeds 2, far below the critical values. This is

evidence that including higher order polynomials does not yield better fit than using a quadratic

approximation.

J.3.2 No Information Pooling

As discussed in Appendix H.3.3 I pool information across food banks when evaluating the ex-ante

value functions. This may introduce bias, by drawing food banks’ estimated flow payoffs together.

I already use a first-order correction for this bias, however as an additional robust test I consider

how estimated parameters vary when I do not use this information pooling. Figure 35 panel (A)

displays the results from this analysis, presenting estimates of the marginal flow payoff across food

banks just as in Figure 9. My estimates remain in line with the previous results.

J.3.3 Sampling Variation in Means

As discussed in Appendix H.3.2 I do not take into account sampling variation in my finite sample

evaluations of the expectation terms in Proposition 1. Therefore I likely underestimate the posterior

variance of the flow payoffs. In this appendix I consider how results change when I employ a
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Figure 34: Robustness: Stage 1

(A) (B)

Note: The figure considers the accuracy of my quadratic approximation. Panel (A) presents R2 statistics from the

least squares quadratic fit, while panel (B) considers third and fourth order polynomials, presenting F statistics for

whether the additional parameters are significant at the 10% level.

bootstrap resampling procedure on the estimated expectations. When estimating these means,

for each draw from my posterior distribution of second stage parameters I randomly draw (with

replacement) the time periods used to evaluate the means. This procedure should overestimate

the posterior variance, as it does not account for covariance between the sampled parameters and

the sampled time periods. Figure 35 panel (B) displays the results from this analysis, presenting

estimates of the marginal flow payoff across food banks just as in Figure 9. Credible intervals become

somewhat larger, but not by much, and the plot remains similar. This is unsurprising given the

long panel, and that I am pooling information across food banks.

K Simulation Details

In this Appendix I describe how the counterfactual simulations are performed. Appendix K.1

focuses on the Old System, detailing how I numerically solve for the equilibrium value function.

Appendix K.2 outlines how I simulate the Choice System. Appendices K.3 - K.6 detail how I simulate

equilibrium allocations under the remaining counterfactuals. The additional counterfactuals all use

the same basic continuous time set up as the Old System. They only differ in the offer and acceptance

processes. Due to computational constraints equilibria are evaluated only at the posterior means

of my parameter draws. This simplification is unlikely to have a major impact on my results as

equilibrium accept/reject decisions are much more strongly determined by the flow payoffs than the

continuation values.

For all the counterfactuals there is a risk that stocks trend downwards for some food banks, and
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Figure 35: Robustness: Stage 1

(A) (B)

Note: The figure plots two sets of estimates for the marginal flow payoff, just as in Figure 9 panel (B). Here, panel (A)

estimates the marginal flow payoff without pooling information on bidding behaviour across food banks, while panel

(B) estimates this object taking into account sampling variation in the finite sample evaluations of the expectation

terms in Proposition 1.

may trend upwards for others (particularly in the random allocation). If this case I would have

to extrapolate estimated flow-payoffs into regions of the state space that were never visited under

the Choice System. This is predominantly a problem under the random allocation, the limited

offer Old System, and the limited offer Closest mechanism. To alleviate these concerns I make

two simplifications. First, if stocks exceed the highest sampled stock for a given food bank for

a particular type of food, the food bank turns down all subsequent offers for that type of food

until stocks return to levels within the sampled space. Likewise if stocks stray below the minimum

sampled stock, all additional loads are unconditionally accepted. Second, whenever stocks exceed

the maximum sampled stock (or stray below the minimum) by more than one standard deviation of

sampled stocks, I do not extrapolate the flow payoff to that state. Instead, I fix the flow payoff to

the minimum flow payoff from across the sampled states. When I do not use these simplifications,

payoffs are significantly lower under these three counterfactual mechanisms.

K.1 Old System

In this Appendix I detail how the simulations of the Old System are performed. I use the same

procedure for both the Old System with only 10 offers, and the Old System with food offered to

every food bank. I treat time as continuous, and each day is of length 1. This means I assume

local donations and offers of food from Feeding America are received continuously during the day.

However, to ensure that results are easily comparable across the Choice System and Old System

simulations, when evaluating welfare I treat local donations as only altering stocks at the end of the
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day. Likewise, that flow payoffs only accrue at the end of the period. In evaluating the equilibrium

value function, however, I treat both these objects as continuous.

K.1.1 Set Up

Arrivals

Food is donated to Feeding America at some exogenous rate. Conditional on arriving, the load

has various characteristics. The rate and probability of these characteristics are taken from the

empirical distribution. What matters in the agent’s problem is their belief about the rate at which

they are offered food, and the probabilities of characteristics they are offered.

Priorities

Food is offered to whichever food bank is at the head of a queue. A food bank’s position in the

queue is given by their rank in a priority ordering. The priority ordering at time t is given by the

difference between the total amount of the food bank has been offered up to t, and that food bank’s

target amount at t. Food bank i’s target amount at time t is given by GFi∑
j GFj

× The total amount

of food allocated up to time t.

Because the ordering is a function of the amount of food offered to food bank i, not the amount of

food actually allocated to them, once a food bank is offered a load, their new priority is independent

of whether they accept or reject the load.

I set initial priorities equal to long-run average priorities, with minor perturbation to ensures

initial priorities differ across simulation draws. I also drop results from the first 100 days in my

sample period, reducing the dependence of my results on the initial priorities.

Net Local Donations

Estimated local donations arrive at discrete intervals, however I must translate this into continuous

time. I assume that local donations arrive at exogenous Poisson rate qi, with one element for each

of the storage methods. Denote Net Local Donations at time t from storage method l by x̃il(t).

This is non-zero with rate qil. Conditional on being non-zero, this donation Xilt is drawn from

distribution FX . The assumption I make on F is discussed shortly.

Daily local donations of type l are given by
∫ 1

0
x̃il(t)dt. Given the assumptions of our model,

this is expected to be normally distributed with mean µil and variance Σil. This is a sum of i.i.d.

random variables, ensuring that the choice of FX should not matter if qil is sufficiently high so

that I can apply the central limit theorem. In general, both FX and q are not jointly identified

from discrete data. However, the requirement that total net daily local donations has mean µi and

variance Σi, plus a functional form assumption on FX , can be used to pin down FX and qi.

I assume that Xilt ∈
{
Xil, X̄il

}
with probabilities 1 − ril and ril respectively. Conditional on

Xil, X̄il (which I discuss shortly), I set qil and ril to ensure that the mean and variance of daily
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donations equal µi and Σi.
74

Payoffs and States

If food bank i accepts lot l they receive lot specific flow-payoff υilt. If they are in state si, then

they also receive combination specific flow-payoff Φzhlt + j(si + zglt). If they reject the lot, they only

receive flow payoff j(si). Importantly, this means that at every continuous moment in time (with

density zero), the food bank receives flow payoff j(si).

I discretise the individual state space in the same way as done in Section 5.4, using a grid formed

of 20 evenly spaced points from each dimension of the state. This means that accepting a lot, or

receiving a local donation, can only move the state in a finite number of ways, which I now discuss.

From state si if they accept lot l their stocks would increase by zgl . Therefore, for each lot × state

combination I find the nearest discretised state that minimises the euclidean distance to si + zgl .

This allows me to define the 205 × 205 matrix Zl containing a single 1 in each row (corresponding

to a particular state) in the column that corresponds to this closest state from accepting lot l.

I do a similar thing for the local donations. I set X̄il = −Xil equal to the distance between my

grid points, so that with rate qil the food bank moves up or down a grid point, with probabilities ril

and 1− ril respectively. This allows me to define the transition matrix Ql containing two non-zero

values (ril and 1 − ril) in each row, in the columns corresponding to the states one discrete notch

above and below (along dimension l) of each state.

K.1.2 Equilibrium

The Agent’s Problem

Write the agent’s value function as V (t, si, s0). This gives their presented discounted value from

state (si, s0) at time t. I augment the common state to include the newly defined priorities and

Goal Factors. If the food bank is offered a load at t they must be at the head of the queue, and so

have the highest priority. If they are offered load l characterised by (υilt, z
g
lt, z

h
lt), they will accept if

υilt + Φzhlt + V (t, si + zgilt, s0) > V (t, si, s0).

Beliefs

The agent believes that Feeding America will offer them a load at Poisson rate pi(t, s0). In principle

this should depend on the state of every food bank, including i, however I will assume that food

banks do not observe each others’ states. The agent then believes that, conditional on receiving an

offer, the load will have characteristics (υi, z
g, zh) with probability density f ci (υi, z

g, zh; t, s0).

74I also impose that ril ∈ [0, 1]. Average net daily donations are then given by qil(Xil + ril(X̄il−
Xil)). The variance is given by q2

ilril(1 − ril)(Xil − X̄il)
2. Under the additional restriction that

X̄il = −Xil, it can be shown that qil =

√
Σil+µ2

il

−X̄ilXil
and ril =

µil/qil−Xil
X̄il−Xil
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Equilibrium

I assume a Markov Perfect Equilibrium in symmetric strategies, as defined in section 4. This requires

that food banks make optimal accept/reject decisions given their beliefs about p and f c, and that

their beliefs about p and f c are consistent with the observed realisation of the rates at which Feeding

America offers them loads.75 As I have assumed a stationary equilibrium, I require that p and f

are conditionally independent of t.

Because equilibrium value functions must be calculated over a large state space I make a number

of simplifying assumptions about equilibrium beliefs. I assume food banks do not observe other

food banks’ stocks, nor when loads are offered to other food banks (hence aggregate supply is also

unobserved). They only observe when Feeding America offers them a load. I therefore assume the

only objects used to form their beliefs are si, their own (relative) Goal Factor, and the time since

they were last offered a load τ . I assume that f c, the distribution of lot characteristics, depends

only on GFi. I assume that the offer rate p also depends only on GFi. In principle I could allow

p to depend on τ , however for simplicity I assume it does not.76 I will consider this dependence

as a robustness check in future. I also assume food banks beliefs do not change conditional on the

previous history of offers. That is, food banks do not infer from frequent offers that offers will be

more frequent in future. I will allow for this dependence in a future robustness check.

I assume parametric forms for both these objects. Broadly, for f ci , I split lots into the same

60 discrete category combinations used for the lot specific variances σl, detailed in Appendix H.2.

Therefore f ci can be interpreted as conditional probabilities. Then, conditional on the category

combination, I assume food banks believe that, in equilibrium, the distance between the lot and

a given food bank is normally distributed with some mean and variance. I also assume that,

conditional on category combination, food banks believe Φzh is also normally distributed. I then

assume a multinomial logit form for the probabilities of each category combination being offered,

with probabilities allowed to vary with GFi. Finally, I assume that pi is (logit) linear in GFi.

K.1.3 The Optimal Control Problem

Under the assumptions outlined above, we can write the value function as a function of si and τ ,

and GFi. It does not depend on t due to the stationarity assumption. For numerical convenience I

75One problem with assuming a stationary equilibrium is that food banks’ stocks may not be
stationary under a counterfactual. If µi < 0 then all else equal their stocks trend down over time. I
previously made the assumption that food banks are able to consume enough food from the Choice
System to ensure their unobserved stock process remains stationary. Priors suggest the Old System
is worse at allowing food banks to access the food they need. Therefore there is no guarantee their
unobserved states will be stationary. However, this does not rule out the possibility of a stationary
equilibrium. If stocks quickly trend down to the point where food banks accept any load they are
offered, this equilibrium is still stationary. It is therefore important that I drop the first 100 days
in my analysis (and equilibrium belief update), to ensure food banks are in this equilibrium.

76This is unlikely to be a problem, since, for most food banks, loads are offered to them so
frequently it is unlikely they will ever have to wait particularly long before receiving another offer.
I cannot allow f c to depend on τ for computational reasons.
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absorb GFi into the individual specific value function. Therefore write the value function as Vi(τ, si).

Accept/Reject decision

Food bank i, that is offered load l, accepts the load if υil+Φzhl +Vi(0, si+zgl ) ≥ Vi(0, si). Regardless

of whether they accept or reject the load, τ resets to 0.

HJB Equation

The Hamilton-Jacobi-Bellman differential equation is given by:

(ρ+ pi +

5∑
l=1

qil)Vi(τ, si) = pi

∫
cl

max
{
υl + Φzhl + Vi(0, si + zgl ), Vi(0, si)

}
dF ci (υl, z

h
l , z

g
l )

+

5∑
l=1

qil

∫
Vi(τ, si +X)dFX(Xl) + j(si) +

∂Vi(τ, si)

∂τ
(20)

Where ρ gives the discount rate (= (1−β)/β). To solve this differential equation, write Vi in vector

form, stacking over all the possible individual states si (i.e. our discretised states). Also discretise

the category combinations across c. The equation can then be written as:

(ρ+ pi +
∑
l

qil)Vi(τ) = piHi(τ) +
∑
l

qilQlVi(τ) + j +∇τVi(τ)

Where Hi(τ, si) =
∑
c

f icE[max
{
υl + Φzhl + ZgcVi(0), Vi(0, si)

}
|c, si] (21)

Where Zgc gives the transition matrix defined by the pounds from a load of category combination

c, and Ql gives the transition matrix formed from the net local donations. The expectation is taken

over υl + Φzhl . This vector differential equation does not have an analytic solution. However,

recognising that Hi(τ) = Hi(0) it is clear that there exists a solution for V which is independent

of τ , for which we can solve using numerical methods.

Numerical Solution

For a given Vk
i and beliefs (pk, f ck) I compute Hk

i , then evaluate Vk+1
i = ([ρ + pi]I +

∑
l qil[I −

Ql])
−1(j + pkiH

k
i ), repeating until the magnitude of the normal vector |Vk+1

i −Vk
i | is less than 1. I

use these successive approximations, and switch to Newton-Kantorovich algorithm as in Rust (1987)

when progress slows. Inverting the matrix Ql is not feasible due to its size. However multiplying

by Ql is trivial given its sparsity. Therefore in evaluating this matrix inverse, and the inverse used

in Newton-Kantorovich, I use the Neumann formula for matrix inversion. This procedure generally

converges in around 100 iterations.

I then simulate the Old System using these value functions, before updating beliefs. I update pk+1
i

by running a Poisson regression on the number of offers each food bank receives each day, conditional
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on goal factor, and dropping the first 100 days. I then update f ck+1 by estimating a multinomial

logit model on the category combination that composes each offer. I repeat this process until the

rates and estimated probabilities change by a total less than 10−4. Beliefs converge extremely

quickly, generally around 4 iterations, as value functions are relatively insensitive to beliefs.

K.2 Choice System

I now detail how I simulate the Choice System. I simulate the mechanism as laid out in section 2.

I use these simulations both as a comparison for my counterfactuals and to assess model fit.

K.2.1 Basics

I simulate the system once for each of the 1000 posterior parameter draws. For each of these draws

I use the associated draw of net donations (given by the unobserved stocks less their observed

winnings). The set of objects being allocated each period is taken as given. As I observe and

estimate my model on equilibrium bidding data under the Choice System, I do not need to solve for

equilibrium beliefs or continuation values. Instead, estimated beliefs Γ can be used as equilibrium

beliefs in my simulations, and the estimated pseudo-static payoff function k(si, s0) can be used in

place of flow payoffs plus the equilibrium discounted continuation value. This approach would not be

valid if I wanted to consider changes to the Choice System, such as changes in food banks’ budgets.

I treat maroon pounds as exogenously determined, so I continue to not model food banks deci-

sions to sell their local donations. I also treat joint bidding as exogenous - if a bid is placed jointly

I have each food bank optimally set their bid taking as given the other player’s bid. Food banks

continue to split winnings evenly. This is a major simplification, but one that I would not expect

to significantly impact the results, particularly given that joint bidding makes up a small fraction

of bids. I treat discriminatory auctions of multiple loads correctly, though only allow food banks to

place up to 5 bids on each set of these auctions. This is done using the adjustment to payoffs and

first order conditions discussed in Appendix E.

The central problem in estimating the Choice System concerns the bidding function, as this

involves a complex combinatorial problem of deciding which combination of lots to bid on. It is

made more complicated by the possibility of multiple local optima.

K.2.2 The Bidding Function

I describe how I find optimal bids by first discussing how I optimise bids conditional on an entry

decision dit, before discussing how I find the optimal entry decisions. I then discuss how I validate

any optimised bids. The key simplification I make is assuming that Ψi is negative definite. This

would imply that the payoff function is concave in bids and entry decisions, allowing me to exploit

standard results from convex optimisation. If Ψi is indefinite, the problem of finding an optimum is

NP-hard. In practice my sampled Ψis for Type 1 food banks are not always negative definite, but

they are in the vast majority of cases. Even when they are not negative definite, most often they
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are fairly ‘close’ to negative definite, in that the largest (positive) eigenvalue is orders of magnitude

smaller than the smallest (most negative) eigenvalue.

Conditional on an entry decision d I use standard interior point methods to numerically maximise

payoffs subject to reservation prices. I begin the maximisation process at b0ilt = Rl + 1. In principal

there may exist multiple local optima when Ψi is non-negative definite. However even for simulated

Ψi matrices that exhibited large complementarities I was unable to find evidence of multiple optima.

This is likely on account of my quadratic assumption, ensuring that for any b−l (any vector of bids

excluding bl) payoffs are quasi-concave in bl.

Considering every permutation of entry decisions is not feasible. Instead I find initial optimum

entry decisions d∗ using a hill climbing procedure. Under this procedure there are three options for

each l, either dl = 0, dl = 1 and bl = Rl, or dl = 1 and bl = Rl + 1. I begin with every dl = 0

and run a hill climb until reaching a local optimum. If Ψi is negative definite this is guaranteed

to be the global optimum, and any optimal bids found after this procedure are also guaranteed to

be optimal. In simulations I found numerous occasions in which there were multiple local optima,

but only in cases when the simulated Ψi exhibited sufficiently strong complementarities. Sampled

(non-negative definite) Ψi do occasionally admit multiple optima, particularly when the number of

desirable lots is large.

Finally, I use the First Order Conditions to ‘check’ my optimum. For bilt > Rl I check that the

partial derivatives are less than 10−5. For dilt = 0 I check that the food bank does not strictly prefer

dilt = 1, and for bilt = Rl I check the food bank does not strictly prefer either bilt > Rl nor dilt = 0.

If Ψi is negative definite then solutions found by hill climb followed by numerical optimisation are

guaranteed to satisfy these conditions. If either of these conditions fails (and if so, it is always one

of the latter two conditions) I repeat the hill climb from this point, and repeat the process until I

find a solution that does satisfy these conditions. By construction, each time I repeat this process

the expected payoff increases, ensuring that this process terminates in a finite number of iterations.

This occurs in a limited number of cases for Type 1 food banks only.

Two final things are worth mentioning. First, the problem of multiple optima is unlikely to

be significantly impacting my results as it is only a problem for certain draws of Ψi. Even then

the model fit is typically fairly good (at least for Type 1 food banks, for whom multiple optima is

a problem). Second, food bank managers likely do not solve the full combinatorial problem, and

instead likely use heuristics. It is also not impossible that they also get stuck at local optima. A

hill climbing heuristic is possibly even more sophisticated than they might use in practice (as it

can require many iterations to find a solution). Therefore this algorithm could be considered a

reasonable approximation to their behaviour.

K.3 Random Allocation

I now detail how I perform the random allocation. This mechanism is fundamentally the same as

the Old System in which food is offered to every food bank, using the same queueing system. The

only difference is that food banks are not given a choice to reject the lot. The only time a food bank

is not offered a lot is if their stocks are above the maximum of the stocks sampled under the Choice
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System. This is in order to prevent having to make large extrapolations, and keep the resulting

welfare comparable to that under the Choice System and other counterfactuals.

K.4 Closest Mechanism

The closest mechanism offers food to the nearest food bank first and, in this case of the ‘all offers’

version, then works down food banks in order of distance. Strategically it is very similar to the Old

System, except that offers (and characteristics conditional on an offer) will be much more food bank

specific, rather than determined by Goal Factor. It is also much more likely that these objects do

not depend on the time since the previous offer.

I follow the continuous time modelling approach used for the Old System, so that the Hamilton-

Bellman-Jacobi equation remains fundamentally the same. Food banks form beliefs about the rate

pi at which they receive offers of food. Conditional on an offer, the load has characteristics c with

probability f ci . As for the Old System I group food into the 60 category combinations used for the

lot specific variances. Conditional on a category × food bank combination, I assume the distance

between the food bank and the lot, as well as Φzhl , is normally distributed.

As with the Old System I numerically solve the Hamilton-Bellman-Jacobi equation. For the

‘single offer’ Closest mechanism I can directly estimate pi, f
c
i , and the means and variances of the

normally distributed lot characteristics by considering the set of lots for which they are the closest

food bank. For the ‘all offer’ version, given initial beliefs, I must repeatedly evaluate the value

function and simulate the system until beliefs about these objects converge.

K.5 Like Mechanism

Details of the Like mechanism come from Walsh (2015). Under the Like mechanism each load

is offered to every food bank simultaneously. The load is then randomly assigned, with some

probability, among the food banks that ‘Liked’ it. This assignment probability is given by a food

banks’ Goal Factor, divided by the sum of Goal Factors of the food banks which ‘Liked’ the load.

Once more, I model this allocation problem in continuous time. I assume food banks form

beliefs about the probability that food is offered p, and the characteristics of food being offered

f ci .77 Neither of these objects depend on the actions of other food banks. I also assume they form

beliefs about the probability πci of winning any given lot conditional on ‘Liking’ it and characteristics

c. I assume these equilibrium probabilities does not depend on time, nor on other aspects of the

state. While food banks have more information than under the Old System, I assume they still do

not observe which food bank wins the food.78

77The i subscript here is just to recognise that food banks face different distributions of distances.
78It is plausible that these beliefs should depend on aggregate states, just as win probabilities did

in the Choice System model. However given the small effects I found in the first stage estimation it
is unlikely there would be any economically meaningful changes with the state.
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Under this set up, the Hamilton-Bellman-Jacobi differential equation is given by:

(ρ+p+

5∑
l=1

qil)Vi(τ, si) = p
∑
c

f cπci (τ)E[max
{
υl + Φzhl + Vi(τ, si + zgc)− Vi(τ, si), 0

}
|c, si]+Vi(τ, si)

+

5∑
l=1

qil

∫
Vi(τ, si +X)dFX(Xl) + j(si) +

∂Vi(τ, si)

∂τ
(22)

As in the main text I will assume a symmetric Markov Perfect Equilibrium, so that V and πci
are independent of τ . I solve for equilibrium just as I did for the Old System.

K.6 Efficient Sequential Mechanism

Under the Efficient Sequential mechanism each load is allocated to the food bank with the highest

value, or discarded if no food bank has a weakly positive marginal value. Value includes both flow

payoffs and the continuation value. Strategically this mechanism is very similar to the Old System,

except by construction food banks will always accept any load they are offered.

To evaluate the equilibrium value function I again assume food banks form beliefs about the

rate p of food being donated to Feeding America, and the probabilities of loads coming from each

category combination f c. They then believe they have the highest marginal value for that lot with

probability Γ. I assume this probability function takes the same generalised extreme value form as

in the specification of beliefs for the Choice System. This object will be a function of their marginal

value from winning the lot. As above, I again assume that food banks also form beliefs about the

distribution of distances and Φzhl conditional on food from category combination c, which again I

treat as normally distributed. The Hamilton-Bellman-Jacobi equation is given by:

(ρ+ p+

5∑
l=1

qil)Vi(τ, si) = pH(τ, si) +

5∑
l=1

qil

∫
Vi(τ, si +X)dFX(Xl) + j(si) +

∂Vi(τ, si)

∂τ

Where H(τ, si) = Vi(τ, si) +
∑
c

f cE[Γ(B(υl + Φzhl , τ, si))B(υl + Φzhl , τ, si)|c, si]

B(υl + Φzhl , τ, si) = υl + Φzhl + Vi(τ, si + zgc)− Vi(τ, si) (23)

Once more I assume a symmetric Markov Perfect Equilibrium, and fit the same empirical spec-

ification to Γ estimating food bank specific separate shape, scale, and location parameters for each

category combination. Unlike in the previous mechanisms this conditional expectation does not

have a closed form solution, so I find it through simulation. I then numerically solve this equation

as I did for the mechanisms as described previously. I simulate the system and estimate the function

Γ just as in the main text, repeating this procedure until beliefs converge.
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