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Abstract

Auctions rarely take place in isolation. Often, many heterogeneous lots are

auctioned simultaneously, and auctions are repeated as new lots become avail-

able. In this paper I develop an empirical model of bidding in repeated rounds

of simultaneous first-price auctions. Incorrectly modelling bidders as myopic

or as having additive preferences over lots can lead to inaccurate counterfactu-

als and welfare conclusions. I prove non-parametric identification of primitives

in this model, and introduce a computationally feasible procedure to estimate

this type of game. I then apply my model to data on Michigan Department of

Transportation highway procurement auctions. I investigate the extent of cost-

synergies across lots and use counterfactual simulations to compare equilibrium

efficiency when contracts are auctioned sequentially rather than simultaneously.
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1 Introduction

First-price Auctions, which are regularly used to allocate government procurement

contracts, rarely take place in isolation. Multiple lots (contracts) are often auctioned

simultaneously, and auctions are repeated whenever new contracts become available.

In real world environments bidders’ values may be non-additive across different lots.

For example, bidders may face capacity constraints, facing higher costs the larger

their current backlog. Or, they may benefit from economies of scale, facing lower costs

when working on many of the same type of contract at once. The structure of these

non-additive values is highly relevant for auction design — should similar contracts

be auctioned simultaneously, or spaced out over time? When capacity constraints

are the dominant factor, auctioning a large number of contracts simultaneously may

create inefficiencies by depressing competition. However, if firms are able to exploit

economies of scale it may be worth auctioning similar contracts simultaneously, or

even bundling the lots together.

In this paper I develop an empirical model of forward looking bidding in repeated

rounds of simultaneous first-price auctions, and study identification and estimation

in this framework. I apply the model to Michigan Department of Transportation

(MDOT)’s procurement auction data and investigate the empirical and policy rele-

vance of these complementarities.

Previous research has either studied forward looking bidders and assumed auctions

are single-object, or studied auctions of multiple objects and assumed bidders are my-

opic. For example, both Jofre-Bonet and Pesendorfer (2003) and Gentry et al. (2023)

study synergies in bidding behaviour in repeated simultaneous first-price auctions

for highway maintenance contracts.1 Jofre-Bonet and Pesendorfer (2003) estimate

a dynamic single object model, assuming that payoffs are additive in lots auctioned

simultaneously, and find significant negative effects of capacity constraints on bids.

Gentry et al. (2023) study simultaneous first-price auctions, assuming myopic bid-

ding, and find similar capacity constraint effects. However, they also find evidence

of positive synergies among similar contracts that allow firms to exploit economies

of scale. The implication is that neither paper accurately models the non-additive

1Other examples from the literature on combinatorial auctions include Cantillon and Pesendorfer
(2007) on London bus routes and Fox and Bajari (2013) on FCC spectrum licenses. Other examples
from the dynamic single object literature include Kong (2021) on oil and gas leases and Backus and
Lewis (2016) on online marketplaces.
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values and the effect on bidding. To the best of the author’s knowledge this paper is

the first to unify the dynamic and multi-object approaches to empirical auctions.

I develop a structural empirical model of forward looking bidding in repeated simul-

taneous first-price auctions, where lots are heterogeneous and payoffs are non-additive

across lots. The model is fundamentally the union of the models presented in Jofre-

Bonet and Pesendorfer (2003) and Gentry et al. (2023), henceforth referred to as JP

and GKS respectively. Bidder pay-offs are represented as the sum of privately known

and potentially correlated lot specific values, a combination specific flow payoff, and

a combination specific continuation value. Following GKS, the combination specific

flow payoff is treated as a deterministic function of state variables. This is a natural

framework that reflects known capacity constraints or economies of scale. The model

primitives consist of the distribution of lot specific values and the combination specific

flow payoff function.2 The central difficulty for both identification and estimation is

that there is not a one-to-one relationship between bids and values. Therefore, unlike

Guerre et al. (2000), we cannot invert equilibrium bidding functions to point identify

values. Likewise, unlike JP, we cannot write the continuation value as a function of

the equilibrium distribution of bids only.

Building on this framework I make three key contributions to the empirical auction

literature. First, I show that variation in state variables, such as backlogs or contract

characteristics, non-parametrically identify bidders’ combinatorial flow payoffs. Intu-

itively, identification arises because variation in the state causes variation in bidders’

combination values, which in turn causes variation in their bidding behaviour. If lots

are substitutes we expect to observe more aggressive bidding when backlogs are low.

Extending the approach presented in GKS to the dynamic setting I translate the

inverse bidding system, conditional on a given state, into a system of linear equations

in the unknown combinatorial flow payoffs. Key to the identification argument is that

we combine these systems of equations across state variables, essentially stitching to-

gether observations of bidding behaviour from different states. I prove that, under

mild conditions, this system has a unique solution.

Second, I propose a three step procedure for estimating the model and establish

that it is
√
T consistent and asymptotically normal. This estimator generalises JP’s

2Like GKS this allows me to separately identify complementarities and affiliations, the central
problem studied by Kong (2021). Affiliation across lots comes through correlation in the lot specific
pay-offs, while the synergies remain deterministic. Like both papers I assume the lot-specific pay-offs
are independent across players.
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procedure: While the continuation value cannot be written as a function of the equi-

librium bid distribution only, it can be written as a function of the bid distribution

and a term that corrects for the complementarities between lots. This correction

term is a function of the sum of the combinatorial flow payoff and the discounted

continuation value. The novelty of the estimation procedure then concerns how we

estimate this correction term. I refer to this term as the ‘pseudo-static’ payoff: It

is the object we estimate if we incorrectly estimated a misspecified static model.

This suggests a simple estimation procedure. In the first step one estimates bidders’

equilibrium beliefs, or the equilibrium distribution of bids. In the second step we

estimate the pseudo-static payoff — the sum of the flow payoff and the continuation

value — by essentially estimating the multi-object auction model almost as if it were

a static model. In the final step we evaluate the continuation value using the esti-

mated correction term, before separating out the combinatorial flow payoff from the

estimated pseudo-static payoff. This procedure is little more computationally costly

than estimating a static multi-object model as in GKS.

Finally, I apply this framework to data from Michigan Department of Transport

(MDOT)’s procurement auctions. In this setting around 45 contracts for highway

maintenance and construction projects are auctioned simultaneously in each round,

and rounds are repeated roughly every fortnight. I focus on contracts that require

use of either hot-mix asphalt, concrete, or both. I use firms’ backlogs of asphalt and

concrete projects as their state variables, and consider how backlogs impact their

cost functions, driving complementarities between lots. For asphalt specialist firms

in particular I find evidence of increasing returns to specialising in asphalt contracts:

Every one standard deviation increase in their asphalt backlog increases the cost of

completing a concrete contract by around 10%, and decreases the cost of an asphalt

contract by roughly the same amount. I use counterfactual simulations to consider

how the procurement cost to MDOT and the total cost to firms differs when contracts

are auctioned sequentially instead of simultaneously.

The structure of this paper is as follows: Section 2 introduces the auction game

that is the focus of this paper. Section 3 introduces the identification framework and

proves that model primitives are point identified. Section 4 outlines the proposed

three step estimation procedure and establishes large sample properties. Section 5

applies this procedure to data from MDOT procurement auctions. Several additional

results are presented in the Appendices. Appendices A - C present technical proofs.
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Appendix D presents several extensions to the identification and estimation frame-

work, including extensions for second-price auctions, reservation prices, endogenous

entry, and stochastic combination values. Appendix E presents the results of a sim-

ulation experiment evaluating the proposed estimation procedure, and F presents

additional analysis related to the empirical application.

1.1 Related Literature

My key contribution is to unify the literatures on the identification and estimation

of both dynamic auction models and multi-object auction models.3 JP was the first

to estimate a dynamic auction game, analysing sequential highway procurement auc-

tions and find backlog effects to be determinants of future bidding behaviour. Sev-

eral papers have built on this framework, including Jeziorski and Krasnokutskaya

(2016) on dynamic auctions with subcontracting, Groeger (2014) on participation in

repeated auctions, Balat (2013) on unobserved heterogeneity in lot quality, and Rais-

ingh (2021) on pre-announcements. These papers study settings in which multiple

auctions are held simultaneously, and assume payoffs are additively separable across

auctions within a period. This assumption is unpalatable given they find evidence of

non-additivities across auctions held in different periods.

Cantillon and Pesendorfer (2007) were the first to estimate a model of simultaneous

auctions. They use combination bids to identify complementarities in simultaneous

first-price auctions, studying procurement auctions for London bus routes. Kim et al.

(2014) use this framework to study the allocation of contracts for Chilean school

meals. Fox and Bajari (2013) study an auction environment without combination

bidding. However their equilibrium stability condition, which is used to identify the

complementarities, cannot be applied in general. GKS also focus on simultaneous

first-price auctions without combination bidding. They prove the model is identified

using variation in ‘excluded’ variables: Variables that are excluded from the a bidder’s

combinatorial payoff, such as characteristics of their rivals, and only indirectly affect

bidding behaviour through bidders’ equilibrium beliefs. However, exclusion restric-

3This work is also tangentially related to the literature on empirical Multi-unit auctions, which
focuses on divisible homogenous units (see e.g. Hortaçsu and McAdams (2018)). The estimation
procedure presented in section 4 easily extends to dynamic multi-unit auctions. Another related
literature analyses forward looking behaviour in second-price auctions, including Backus and Lewis
(2016) and Bodoh-Creed et al. (2021). In Appendix D.1 I extend my identification and estimation
results to the multi-object second-price setting.
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tions fail in a dynamic environment. Bidders’ forward looking behaviour ensures every

state variable directly effects their continuation value, and hence bidding behaviour.

These exclusion restrictions are not necessary for identification. Arsenault Morin et al.

(2022) extend GKS to allow for endogenous participation in simultaneous auctions,

and study auctions for roof-maintenance contracts in Montreal.

2 The general model

2.1 Setup

Rules: Suppose that each period t, over an infinite horizon, n risk-neutral players i

compete in a series of first-price Sealed Bid auctions. Lots are indexed by l, and player

i wins lot l in period t if bitl ≥ max
j 6=i
{bjtl}. Sealed bids are placed simultaneously,

then winners are announced. Winners pay their bids, and every player observes the

bids and identities of winners. Define the L× 1 vector wt as the outcome at time t,

where wtl = i if i won lot l at time t. Ex-ante hypothetical outcomes are denoted by

wa
t .

Reservation Prices and Ties: I assume reservation prices do not bind, that

auction entry is exogenous, and that ties occur with probability zero.

Lots and Lot Characteristics: L <∞ lots are auctioned each period. Allowing

L to vary across periods does not change any of my results. Each lot l is characterised

by a row-vector of characteristics xtl, writing Xt for the stacked characteristics of all

lots in period t. Characteristics may include the size and location of a particular

contract, for example. I assume the set of characteristics, X, is finite. Finally stack

the lot characteristics and other common state variables into s0t ∈ S0.

2.1.1 States and Primitives

Individual States: Player i begins the period in state sit. This may represent a

player’s existing stock of the good, or backlog of contracts. I assume the set of possible

individual states, Si, is finite.4 If the outcome at t is wa
t then player i ends the period

in state sait, referred to as the ex-post state. sait = sit if and only if the player does not

4This is predominantly for mathematical convenience, but is likely to hold in practice. Highway
maintenance companies likely have a maximum number of contracts they can feasibly hold at any
given time, and their backlog of contracts can be arbitrarily discretised into days of work remaining.
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win a single lot. For notational convenience, define the set valued function Sai (si, s0)

as the set of possible individual ex-post states sai having started in state si, given the

common state s0.

Total States: Stack the individual states {sit}i∈I, and s0t, into the total state

variable st ∈ S, where |S| = S is finite. In section 3.6 I give sufficient conditions on S
to ensure identification. Similarly, Stack the ex-post states for sat ∈ S.

Transition Process: At the beginning of each period, the state st is drawn

stochastically from Ts(.|sat−1). Because |S| is finite, the transition probabilities can be

described by transition matrix T , such that P (st = sm|sat−1 = sn) = Tmn.

Actions: Each player plays an L dimensional vector of bids each period, denoted

bit. The set of possible bids is convex and compact, so that bitl ∈ [b, b̄].

Lot Specific Values: I focus on an independent private value framework. If i

wins lot l at t they receive a lot specific payoff, υitl. Stacking these values υit, a L× 1

vector, is drawn from cumulative density function Fi(.|st) with support [υi, ῡi].

Combination Value: The combination value is given by Ji(st), a 2L × 1 vector.

Each row Jia(st) gives the mean flow pay-off corresponding to a different outcome

wa
t , ending the period in state sait. There are 2L possible combinations of lots i might

win, each of which corresponds to a different combination payoff, and so a different

element of Ji. Whereas υ is stochastic, I assume Ji is a deterministic function of s

and is finite. A player’s type is characterised by the tuple (υi, Ji). I assume that Fi

and Ji are both common knowledge.

2.1.2 The Bidder’s Problem

Strategies: A (pure) Markovian strategy σi consists of a mapping from a player’s

type (υi, Ji) and the state of the world s onto a series of bids bit. Ex-ante a player’s

strategy admits a distribution of bids according to Fi, Ji, and s.

Marginal Win Probabilities: Denote Gjl(.;σj) and gjl(.;σj) respectively the

marginal cdf and pdf of individual j’s bid on lot l according to their strategy σj.

Denote Γi(b;σ−i) the L × 1 vector where row l contains the probability that i wins

lot l, given their bid and the strategies of other players. Because ties occur with zero

probability we can write:

Γil(bilt;σ−i) =
∏
i′ 6=i

Gi′l(bilt;σi′)
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Combination Win Probabilities: Denote Pi(b;σ−i) the 2L×1 vector of proba-

bilities of possible combination wins, conditional on i’s bids and σ−i. Each row of this

vector corresponds to the probability of i winning a different one of the 2L possible

combinations of lots. So, row a of this vector contains the probability that i’s ex-post

state will be sait.

Overall Combination Probabilities: There are nL different ways n players can

win L lots, so nL different possible wa
t s. Therefore, denote Qi(b;σ−i) the nL × 1

vector of probabilities of possible outcomes from the round of auctions, conditional

on i’s bid and σ−i. Row a of this vector then contains the conditional probability that

the outcome from period t is wa
t , and so the overall ex-post state is sat . This object is

extremely similar to the combination win probabilities P presented previously, except

Q also accounts for exactly which player wins each lot. By definition, summing Q

over all the ex-post outcomes in which i wins the same combination of lots yields P .

Mathematically, Pa =
∑

a′ s.t. sa′=sa Qa′ .

Discounting: Players have temporally additively separable preferences, and dis-

count future payoffs using known discount factor β ∈ (0, 1)..

Expected Flow Pay-off: I assume that bidders are risk neutral and payoffs are

quasi-linear in payments. Consider player i with a realisation of υ = υit who places

bid b against players bidding according to strategies σ−i:

Π(b|υit, s;σ−i) = Γi(b;σ−i)
T (υit − b) + Pi(b;σ−i)

TJi(s)

Value Function: Denote the power set
{
nL
}

as the set of possible combination

outcomes. The Bellman equation is given by: Wi(υit, st;σ−i) =

max
b

 Π(b|υit, st;σ−i) + β
∑

a∈{nL}

Qia(b;σ−i)

∫
s̄

∫
υit

Wi(υi, s̄;σ−i)dF (υi|s̄)Ts(s̄|sat )ds̄


(1)

Continuation Value: It is useful to define the continuation value: Via(st;σ−i) =∫
s̄

∫
υi
Wi(υi, s̄;σ−i)dF (υi|s̄)Ts(s̄|sat )ds̄. The combination continuation value is given

by Vi(st;σ−i), a nL×1 vector. Each element a of this vector contains the continuation

value corresponding to a different allocation, ending the period in a different state sat .
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2.2 Equilibrium

I now discuss equilibrium, and the assumptions required for existence of an equilib-

rium. A full and general proof of equilibrium existence is beyond the scope of this

paper.5 Instead, I present a proof of existence under the conjecture that equilibrium

exists in the static game.

I focus on symmetric Markov perfect equilibria consisting of strategies σ∗ such that

for any (υ, J, s): 1) Each player’s strategy σ∗i is a best response to the strategies of

rival bidders σ∗−i, 2) Players’ beliefs are consistent with σ∗, and 3) All players play

the same strategy.

2.2.1 Equilibrium Existence

To prove equilibrium existence, I rely on the following conjecture:

Conjecture 1. There exists a unique symmetric (non co-operative) Pure Strategy

Bayesian Nash Equilibrium of the (myopic) stage game, such that for all i and l the

expected pay-off is continuous in υi and Ji.

This conjecture takes essentially the same form as the assumption that a continuous

and unique equilibrium exists in Gentry et al. (2023).

Proposition 1. Under the assumptions of the game, and under Conjecture 1, a

Symmetric Markov Perfect Equilibrium exists.

Proof is relegated to Appendix C, as existence is not the main focus of this pa-

per. The proof consists of showing that the equilibrium pay-off in the stage game is

consistent with the continuation value, employing Kakutani’s fixed point theorem.

5To my knowledge, no complete proof of equilibrium existence exists even for the static game.
This paper joins the papers studying sufficiently complex auction games in which neither existence,
nor uniqueness of equilibrium can be guaranteed. For example, GKS on simultaneous first-price
auctions, Fox and Bajari (2013) on simultaneous ascending auctions, or JP on dynamic single-
object first-price auctions. If the bid space were discrete, then static equilibrium existence follows
from Milgrom and Weber (1985).
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3 Identification

I now demonstrate that the distribution of lot specific values F , and the combination

value J are non-parametrically point identified.6 The intuition is that variation in

s causes variation in payoffs which, in turn, cause variation in bidding behaviour.

For example, if lots are complements then the more a bidder has won in the recent

past, the more aggressively we expect them to bid in the present. I then use the

observed bidding behaviour, as well as information about bidders’ equilibrium beliefs,

to essentially ‘back out’ the distribution of values and the complementarities. My

results ensure identification of Fi and Ji separately for each bidder, however I drop

the i subscripts except where necessary.

I introduce the assumptions necessary for identification in subsection 3.1. In 3.2

- 3.3 I use the bidder’s optimisation problem to derive the Inverse Bid System. In

3.4 - 3.5 I combine this system across states to form a system of linear equations in

J . In 3.6 I present sufficient conditions for this system to have a unique solution. In

subsection 3.7 I consider identification under several extensions of the model.

3.1 Assumptions necessary for identification

Assumption 1. For each t, the econometrician has a set of observations as follows:

Ot =
{

wt, st, {bit}i∈{1,2,...,n}
}

I assume the econometrician observes all bids, not just the winning bid.

Assumption 2. The data {Ot}t=1...T are generated by strategy profile σ∗ which is a

symmetric Markov perfect equilibrium of the dynamic auction game.

This assumption requires that the same equilibrium is played throughout the ob-

served period, ensuring strategies can be written as a function of the state. Define

G(.|s),Γ(.|s), P (.|s), and Q(.|s) as the empirical counterparts to the objects presented

previously. Under these assumptions G,Γ, P,Q, and T are all identified, and for the

6A model is point identified if, given the implications of equilibrium behaviour, the distribution
of bidder’s pay-offs, {Fi, Ji}i∈I, are uniquely determined by the distribution of observables (Athey
and Haile, 2002). A model is non-parametrically identified if the identified objects are functions
(Lewbel, 2019), in the sense that we do not assume a functional form, but identify Ji(s) for every
s ∈ S and Fi(υ|s) for every pair (υ, s).
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remainder of this section I treat these objects as known. Assumption 2 also ensures

the continuation value can be written as a function of the state. We can then express

the continuation value in vector form as V, with elements corresponding to the ex-

pectation from ending a period in any particular ex-post state. I can then define the

relationship between the nL vector V (s) defined previously and V using the known

SnL × S selection matrix A: 
V (s1)

...

V (sS)

 = AV

I also use the notation V (s) = AsV for the nL × S submatrix As. This contains a 1

in entry am if the potential outcome wa yields ex-post state sa = sm, selecting the

relevant continuation values corresponding to the possible ex-post states.

Assumption 3. For all s, i, and l Gi(bi|s;σ∗) is absolutely continuous in bil.

This assumption ensures that the marginal, combination, and over-all combination

win probabilities are continuous and differentiable in b, enabling us to take first order

conditions. As shown in GKS, when this assumption does not hold we lose point-

identification, though the model primitives generally remain partially identified.

Assumption 4. i) E[υ|s] = 0.

ii) Element a of J(s) can be written as: Ja(s) = j(sai ) for some j : Si → R.

Part i) imposes that υ is mean independent of s, as we cannot separately identify

E[υ|s] from J(s). This is similar to the assumption E[υ|s] = E[υ], except we ‘absorb’

the mean of υ into J through a linear term. Part ii) just requires the immediate

combinatorial pay-off from ending the period in state sa depends only on this final

state.7

By stacking J over s and j over si I define a mapping between J(s) and j(si):

J︸︷︷︸
S2L×1

=


J(s1)

...

J(sS)

 j︸︷︷︸
Si×1

=


j(si1)

...

j(siS)

 J = Bj

7This differs from GKS’ approach in which Jia is able to depend on both sa, s, and potentially
even other sa

′
. However, in their empirical example they do impose this restriction.
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Where B is a known S2L × Si selection matrix with rank Si. I also write J(s) = Bsj

using just the 2L × Si sub-matrix Bs. This matrix selects elements of j according

to the possible ex-post states for player i, given they started the period in state s.

We can define the relationship P (b|s)TBs = Q(b|s)TAsC for the S × Si matrix C.

entry mn of C is equal to 1 if smi = sni , and zero otherwise. Therefore, each row of

C contains a single non-zero entry, while column n contains a 1 in rows for which

si = sni . This relationship holds because C collapses Q over states with the same si.

Finally, we must normalise j(si1) because only marginal payoffs are identified.

Based on these assumptions, I will prove the following proposition:8

Proposition 2. Under assumptions 1 - 4, the model primitives F and j are non-

parametrically identified up to β and j(si1).

3.2 First Order Conditions

The agent’s problem is to maximise their expected discounted pay-off, and so in each

period the agent maximises the following object, with respect to b:

Π̃(b|υ; s) =Γ(b|s)T (υ − b) + P (b|s)TJ(s) + βQ(b|s)TV (s)

=Γ(b|s)T (υ − b) + P (b|s)TBsj + βQ(b|s)TAsV (2)

Assumption 3 ensures that P (b|s), Q(b|s), and Γ(b|s) are continuously differentiable

in b. Necessary First Order Conditions of optimal bidding are then given as:

∇bΓ(b∗|s)︸ ︷︷ ︸
L×L

(υ − b∗)︸ ︷︷ ︸
L×1

= Γ(b∗|s)︸ ︷︷ ︸
L×1

−∇bP (b∗|s)︸ ︷︷ ︸
L×2L

Bsj︸︷︷︸
2L×1

−β∇bQ(b∗|s)︸ ︷︷ ︸
L×nL

AsV︸︷︷︸
nL×1

(3)

As above, under the assumption of zero probability ties (or exogenous tie-breaking),

Γil(b|s) =
∏

i′ 6=iGi′l(bil|s). Therefore ∇Γ must be a diagonal matrix with entry ll

equal to
∑

ji′ 6=i gi′l(bil|s)
∏

k 6=i′,iGkl(bil|s), and so ∇Γ must be invertible for most b.

8This result differs from GKS’ identification result even when bidders are myopic (β = 0),
differing in the source of identifying variation. They prove identification using excluded variables
which cause ‘exogenous’ variation in Γ and P . I use included variation in the state variable which
directly enters J + βV .

11



3.3 The Inverse Bidding System and Identification of F

F is identified, conditional on J and βV , by inverting the first order conditions to

obtain υ as a function of bids, J , and βV . This inversion comes from GKS and

is a simple multi-object extension of Guerre et al. (2000) identification result from

inverting the first order conditions. Invert the first order conditions for the inverse

bid system:

ξ(b∗|J, βV ; s) = b∗︸︷︷︸
observed

+∇bΓ(b∗|s)−1[Γ(b∗|s)︸ ︷︷ ︸
Identified

−∇bP (b∗|s)︸ ︷︷ ︸
Identified

Bsj−∇bQ(b∗|s)︸ ︷︷ ︸
Identified

AsβV]

(4)

This system extends the the standard inverse bid function. At the optimum the lot

specific value is equal to bids b∗ plus a lot specific markup∇bΓ(b∗|s)−1Γ(b∗|s), minus

a combination markup ∇bΓ(b∗|s)−1∇bP (b∗|s)Bsj, minus a dynamic markup which

depends on precisely who won each combination of lots∇bΓ(b∗|s)−1∇bQ(b∗|s)AsβV.

We can evaluate this inverse bid function at the observed bids, which holds for a

particular candidate (J, βV ). If this candidate (J, βV ) is correct, then ξ(b∗|J, βV ; s) =

υ. From here it is simple to non-parametrically identify F (.).

3.4 Identification of V

We can write V as a function of the distribution of bids and j only:

Proposition 3. Under assumptions 1 - 4, the expected stage pay-off is given by:

Π̃(b∗|υ; s) =Γ(b∗|s)T∇bΓ(b∗|s)−1Γ(b∗|s)

+ [P (b∗|s)T − Γ(b∗|s)T∇bΓ(b∗|s)−1∇bP (b∗|s)]Bsj

+ [Q(b∗|s)T − Γ(b∗|s)T∇bΓ(b∗|s)−1∇bQ(b∗|s)]AsβV (5)

Proof of this proposition is given in Appendix A, generalising Proposition 1 in JP.

The first term on the right hand side can be written as
∑

l

Πi′ 6=iGi′l(bil)∑
i′ 6=i gi′l(bil)

— the first

term in JP’s proposition. Unlike in the single object case there is a correction for the

non-additivity.

From Proposition 3, employing the identity P (b|s)TBs = Q(b|s)TAsC, and taking
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an expectation of the observed bids, we can write the ex-ante value function as:

V e(s) = Φ(s) + Ω(s)[Cj+βV]

Where Φ(s) = Eb[Γ(b∗|s)T∇bΓ(b∗|s)−1Γ(b∗|s)|s]

Ω(s) = Eb[Q(b∗|s)T − Γ(b∗|s)T∇bΓ(b∗|s)−1∇bQ(b∗|s)|s]As

Stacking over s write the continuation value as V = TVe = TΦ+TΩ[Cj+βV] Which

we invert for: V = (IS − βTΩ)−1[TΦ + TΩCj].9 This ensures that, conditional on j

being known, the continuation value is point identified.

3.5 Identification of j

Impose the mean zero property of υ for:

0 =Eυ[υ|s] = Eb∗ [ξ(b∗; s, (j,V))|s]

=Eb∗ [b
∗ +∇bΓ(b∗|s)−1Γ(b∗|s)|s]− Eb∗ [∇bΓ(b∗|s)−1∇bQ(b∗|s)|s]As[Cj + βV]

=Υ(s)−Ψ(s)[Cj + βV] (6)

Stacking over s, then substituting in the expression for V and simplifying, we get:

0 =Υ−Ψ[Cj + βV]

=Υ− βΨ(IS − βTΩ)−1TΦ−Ψ(IS − βTΩ)−1Cj (7)

This system of LS equations in Si − 1 unknowns overcomes the standard order con-

dition discussed in GKS. There exists a unique solution to this system (j is point

identified) if and only if the LS × Si matrix Ψ(IS − βTΩ)−1C has rank Si − 1.

3.6 Rank of Ψ(IS − βTΩ)−1C

This rank condition requires that observations of bidding behaviour, across all S

states, produces sufficient information about j to uniquely pin down all Si − 1 ele-

ments. We gain information about j(si) from how bidding behaviour changes when

9Non-singularity of (IS−βTΩ) follows from the matrix being strictly diagonally dominant (Levy-
Desplanques Theorem). Strict diagonal dominance arises because every element of TΩ is weakly
positive, and rows sum to 1. Therefore, off diagonals of I − βTΩ lie in the interval (−β, 0], while
diagonals are strictly positive, and rows sum to 1− β.
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si is a possible outcome from the round of auctions. By stacking the moment condi-

tions in equation 7 we stitch together the information about j across different state

observations. One additional assumption is sufficient for this rank condition to hold:

Assumption 5. i) The set Si is partially ordered according to the strict partial

ordering �, such that if s′i ∈ Sai (si, s0) then s′i � si.

ii) The maximal elements of Si do not outnumber the non-maximal elements.

iii) For any non-maximal s′i, si and all s0, for any two corresponding elements of

the set of possible ex-post states Sai (s′i, s0) and Sai (si, s0) denoted sa′i and sai respectively:

If s′i � si then sa′i � sai , and if s′i 6� si then sa′i 6� sai .

The partial ordering assumption only imposes the transitivity of partially ordered

sets. This requires that winning an auction is monotonic: one cannot gain an object

from winning one auction and give it away by winning a different auction. I limit the

number of maximal elements because observations of bidding from maximal elements

are not informative.10 Part iii) requires that if s′i is higher in the partial ordering

than si, then each outcome in the set of possible ex-post states Sai (s′i, s0) is higher

than the corresponding element in Sai (si, s0). For example, if s′i � si then the element

of Sai (s′i, s0) that corresponds to winning every available lot must also be higher than

the element of Sai (si, s0) that corresponds to winning every available lot. This only

requires that if a bidder begins a period with a larger state, winning the same set of

lots means they also end the period with a larger state.

Proposition 4. Under assumption 1 - 5 Ψ(IS − βTΩ)−1C has rank Si − 1

Proof of this proposition is given in Appendix B. The rank condition is not trivial,

since Ψ is certainly rank deficient. Likewise, it is not ex-ante obvious whether stacking

Ψ(s) across initial states provides information about j(sai ) for every possible ex-post

state sai . The bulk of the proof establishes the rank of Ψ and finds its null space. As

we stitch together observations of bidding from each state, stacking Ψ(s) across s, the

rank increases by at least two each time. I then consider the image of (IS−βTΩ)−1C,

proving that the only element in the intersection of this image and Ψ’s null space is

the constant vector.11

10An element si is defined as maximal if there does not exist an s′i ∈ Si such that s′i � si. One
interpretation is that these maximal elements are the largest (under �) states that are observed as
possible ex-post outcomes, but never as ex-ante outcomes. In this way, we want to try to identify j
for these states, but do not get to use observations beginning in these states.

11This proof only holds for the setting when the state space is finite. However the underlying
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3.7 Extensions

Second-price auctions: In Appendix D.1 I show how this framework extends almost

trivially to simultaneous second-price auctions.

Binding reservation prices: In Appendix D.2 I consider how the presence of

binding reservation prices impact identification. Essentially, they cause censoring in

the data so that we immediately lose point identification of both F and j. However,

F remains partially identified, using a similar argument as presented in subsection

3.3. We can no longer use moment conditions to identify j, as in subsection 3.5, and

instead use quantile conditions.

Endogenous Entry: In Appendix D.3 I consider an additional stage in-which

the bidder chooses a subset of auctions to enter, where entering each subset has an

associated cost. This creates a minor change to the representation of V as a function

of j. The identification of j and F follows from previous arguments. Identification of

the entry cost distribution then follows from standard results.

Stochastic Combination Value: In Appendix D.4 I allow the combination value

to be a function of low dimensional (< L) random variables, such as unobserved

states. The necessary restriction is that this function is strictly monotonic in the

unobservables. Identification arises from proving that bids can be inverted to point

identify the unobservables.

4 Estimation Procedure

Having established non-parametric identification, I now describe a computationally

feasible procedure to estimate F and j. Because we cannot write maximised expected

payoffs as a function of bids only (Proposition 3), JP’s estimation method for dynamic

auction models is inapplicable. I begin with a general description, outlining the key

intuition. I then detail the three estimation steps and discuss asymptotics.

4.1 The Premise

The central premise of the procedure exploits that, under the assumption that payoffs

are additively separable over time, we can write the continuation value as a function of:

argument extends to the case with infinite states: Even though the rank of an infinitely large matrix
is undefined, it is clear how the logic of combining observations across states yields identification.
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(1) Primitives of the transition process, (2) the observed distribution of equilibrium

actions, and (3) the sum of the flow pay-off function and the discounted continuation

value. I refer to this sum as the ‘pseudo-static’ pay-off; it is essentially what we

estimate if we incorrectly assume myopic bidding. This relationship is given by:

V (s′) =

∫
s

∫
b

Π(b|s;K)dG(b|s)Ts(s|s′)ds

Where: Π(b|s;K) =Γ(b|s)T∇bΓ(b|s)−1Γ(b|s)

+ [Q(b|s)T − Γ(b|s)T∇bΓ(b|s)−1∇bQ(b|s)]K(s)

and [K(s)]a =k(sa) = j(sai ) + βV (sa) (8)

This equation restates Proposition 3 as a function of G and T , as well as the pseudo-

static pay-off function k. Both G and T can be estimated using standard methods.

Therefore, if we had a consistent estimate for the function k : S→ R, then we would

have a consistent estimate for V , and then j (= k − βV ). Like the distribution of

equilibrium bids, this function k(.) is not a model primitive but an equilibrium object.

The central estimation problem then concerns estimating k.

The procedure generalises JP. We write the Value Fuction as a function of the

distribution bids and this additional combinatorial term, correcting for the non-

additivity across lots. Unlike JP we require an extra estimation step to estimate this

correction term. When payoffs are additively separable Π(b|s;K) = Γ(b|s)T∇bΓ(b|s)−1Γ(b|s)

and the procedure collapses down to JP.12 This procedure is also similar to estimat-

ing a misspecified static model. If players are myopic (β = 0) then k = j. However,

k generally depends on s−i, while j does not. The procedure involves estimating a

generalised static model, allowing payoffs to depend on elements of the state that

enter the continuation value.13

4.2 The Procedure

The procedure can be written succinctly as:

12In a dynamic discrete choice setting this procedure is equivalent to Conditional Choice Prob-
ability (CCP) estimation, and in many other settings it is equivalent to the procedure of Bajari
et al. (2007). It only differs when the policy function is not invertible; for example in a ‘choice over
lotteries’ setting when multiple (non-ordered) types may choose the same action.

13This permits a test of forward looking behaviour. If the model is correctly specified and (s−i, s0)
is excluded from j, then observing that k varies with (s−i, s0) is sufficient to reject myopia.
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Definition 4.1. Algorithm 1.

1. Estimate equilibrium bid distributions G (beliefs) and the transition process Ts.

2. Given Ĝ, estimate k using the identifying conditions E[ξ(bit; st, k, Ĝ)|st] = 0

for each state observed in the data. Then, evaluate F̂ using Ĝ and a change of

variables.

3. Given Ĝ, T̂ , k̂, evaluate V̂ using Equation 8. Finally, evaluate ĵ = k̂ − βV̂ .

I make the following assumption about the true underlying structure, enabling me

to discuss the statistical properties of this estimator:

Assumption 6. i) Beliefs G, the transition process Ts and the pseudo-static payoff

function k are parameterised by finite parameter vectors θG,θτ , and θk respectively.

ii) G(b|s;θG), Ts(s|s′;θτ ), and k(s;θk) are continuously differentiable in θG,θτ ,

and θk respectively. Also, the spaces of parameters ΘG, ΘT , and Θk are compact.

This assumption ensures the consistency, asymptotic normality and
√
T conver-

gence of the estimator.14 With a discrete state space only parameterisation of G

is needed, as both k(s) and Ts can be estimated state-by-state. However, in many

settings (including the application in this paper) researchers may choose to treat a

particularly large state space as continuous. While this assumption rules out fully

non-parametric methods, such as kernels or sieves, it permits flexible parametric and

semi-nonparametric methods such as polynomials and sieve-type B-spline estimators

with pre-specified knot vectors.15 Part ii) of the assumption ensures the standard reg-

ularity conditions hold for asymptotics of Generalised Method of Moments (GMM)

estimators. The standard identification, invertibility, and finite moment assumptions

are implied by the assumptions and arguments presented in Section 3. To apply this

estimator in other settings requires an additional identification assumption. Propo-

sition 5 summarises the properties of this estimator:

Proposition 5. Under assumptions 1 - 6 F̂ and ĵ are
√
T consistent and asymptot-

ically normal, with asymptotic variance given by Equation 10 .

14A similar assumption is required by Bajari et al. (2007), and is used in practice in most studies.
15B-splines are an attractive alternative to fully non-parametric methods, allowing researchers to

estimate flexible models while setting the knot vector to ensure sufficient data in each cell. The Stone
Weierstrass Theorem ensures B-splines approximate any continuous function to arbitrary precision
given sufficient knots. These methods are increasingly being used in the empirical auction literature
(see Hickman et al. (2017) and Bodoh-Creed et al. (2021) as examples).
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I now detail each of the three estimation steps, before demonstrating that their

asymptotic properties follow from Mises (1947) and Newey and McFadden (1994).16

4.2.1 Step 1.

The First Step constitutes the standard first step in the empirical auction literature.

There are several possible approaches the researcher might take. As in GKS and JP

One might estimate the conditional joint distribution of bids Gi, then form Γ(b),

P (b), and Q(b) respectively. Otherwise the researcher may directly estimate these

objects, essentially estimating the joint distribution of maximum rival bids as in

Cantillon and Pesendorfer (2007).

Given Assumption 6 we cannot take a fully non-parametric approach as this com-

plicates asymptotics. Instead, suppose we estimate θG using the estimating equation

E[m1(bt, s;θG)] = 0. m1(bt, s;θG) might be the score vector in a fully parametric

specification, or m1(bt, s;θG) = G(b|s;θG)−
∏

l I[blt ≤ bl] for all b ∈ B for a moment

based approach. Asymptotic properties of this GMM estimator are discussed shortly.

The parameters of the transition process θT must be estimated similarly. The

central requirement, given Assumtpion 6, is that the estimator is chosen to be
√
T

consistent and asymptotically normal, with analytically tractable asymptotic vari-

ance. This includes standard estimators such as maximum likelihood and GMM,

really only ruling out certain non-parametric estimators. As I will discuss shortly,

the choice of parameterisation depends on the parameterisation of k(s;θk), as certain

flexible functional form assumptions can make estimation extremely convenient.

4.2.2 Step 2.

In the second step we estimate the pseudo-static pay-off function k(s;θk), estimating

the (potentially large) parameter vector θk. This broadly follows the second stage in

the estimation procedure presented in GKS, estimating the model as if it were static

using the identifying conditions from Section 3: E[υl|s] = 0.

In practice we employ GMM using the moment condition E[m2(b, s;θk,θG)] = 0,

where m2(b, s;θk,θG) = H(s)ξ(b, s;θk,θG) withH(s) as an h×L dimensional matrix

16Both ĵ and F̂ are centred by their pseudo-true value, under the finite dimensional parameteri-
sation of Assumption 6. That is, the model is likely misspecified and so there remains the possibility
of asymptotic bias. This bias can always be diminished as the sample size increases by increasing
the flexibility of the functional form, such as using splines with a finer grid of knots.
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of instruments that are some known function of s, and so mean independent of υ. θ̂
k

minimises the standard quadratic loss function:

θ̂
k

= arg min
θk


(

1

T

T∑
t

m2(bt, st;θ
k, θ̂

G
)

)T

Ŵ

(
1

T

T∑
t

m2(bt, st;θ
k, θ̂

G
)

)
Where Ŵ−1 = 1

T

∑
tH(st)ξ(bt, st;θ

k, θ̂
G

)ξ(bt, st;θ
k, θ̂

G
)TH(st)

T is the multi-step

asymptotically efficient weight matrix, allowing for within period correlation. Impor-

tantly, the estimate θ̂
k

depends on θ̂
G

, and so inference must take into account this

multi-step estimation procedure, which I discuss in detail in Section 4.3.

In practice it is particularly convenient if the researcher fits a flexible linear in

parameters parametric form to k(s;θk) = h(s)Tθk, where h(s) is, for example, a

vector of B-splines. We then use this vector for our instruments, so that Hl(s) = h(s)

for each l. This form is convenient first because of how it can simplify the third

estimation step, which I discuss shortly, and second because of how it allows us to

interpret this GMM step as a linear instrumental variable problem, as I now discuss.

Rewrite the Inverse Bid System as a regression equation:

blt +
Γl(blt|st)
∇blΓl(blt|st)︸ ︷︷ ︸

yt

= −[
∇bQ(bt|st)
∇blΓl(blt|st)

]l.K(st;θ
k)︸ ︷︷ ︸

H̄(st)θ
k

+υlt

Where row a of the known nL× |θk| matrix H̄(st) is h(sa)T . Now, we could estimate

θk using least squares; minimising the sum of squared residuals
∑

t υt
Tυt. In general

E[υlt[
∇bQ(bt|st)
∇blΓl(blt|st)

]l.] 6= 0 because E[υltbl′t] 6= 0, an endogeneity problem. Instead, we

use our instruments h(s), which are mean independent of υl. The first stage is then:

−[
∇bQ(bt|st)
∇blΓl(blt|st)

]l.H̄(st) = πlh(st) + εlt

Existence of this first stage follows from the previous identification results. How-

ever, the instruments may be weak if h(st) does not ‘cause’ sufficient variation in
∇bQ(bt|st)
∇blΓl(blt|st)

]l.H̄(st). This occurs when the observed variation in initial states st is less

than the variation in the possible ex-post states sat . It is then pertinent to con-

sider additional instruments. Fortunately, many standard packages are available for

analysing the relevance and validity of our instruments in this linear instrumental
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variable setting.

Next, back out the distribution of lot specific values F using a change of variables:

F̂ (υ|s) = G(b∗(υ|s; θ̂
G
, θ̂

k
)|s; θ̂

G
)

Where b∗(.|s; θ̂
G
, θ̂

k
) gives the estimated bid function, which can be evaluated for a

given υ using numerical methods. The estimated bidding function depends directly

on the estimates for beliefs and the pseudo-static payoff function, as well as indirectly

on s. Meanwhile, to draw υs from the estimated distribution, in order to perform

counterfactual simulations, one convenient method is to draw ξl(bt|st; θ̂
k
, θ̂

G
) from

their empirical distribution. This has the benefit that one does not have to explicitly

evaluate F̂ (υ|s).

4.2.3 Step 3.

Given the estimated distribution of bids, transition process, and pseudo-static pay-

offs, evaluate the ex-ante value function, then the continuation value, using equation

8. That is, given a period ends in state s, estimate expected payoffs in the following

period. Assumption 6 ensures the ex-ante value function can also be written as

V e(s;θV ), where θV is a finite parameter vector and the function V e is known up to

θV .17 We could use numerically integration to evaluate the ex-ante value function,

but it is often convenient to take a finite sample approximation over observed bids

and states using non-linear least squares:

θ̂
V

= arg min
θV

{
1

T

T∑
t

[V e(st;θ
V )− Π(bt, st; θ̂

G
, θ̂

k
)]2

}
Π(b, s;θG,θk) is the parameterised object defined in Equation 8. This is equivalent to

using a third GMM step, employing the moment condition E[m3(b, s;θV , θ̂
k
, θ̂

G
)] =

0, where m3(bt, st;θ
V , θ̂

k
, θ̂

G
) = ∇θV V e(st;θ

V )[V e(st;θ
V )− Π(bt, st; θ̂

G
, θ̂

k
)].18

17At worst this known function is given by equation 8, with θV = (θG,θk). Often, as in Section
5, it will be convenient to fit a flexible parametric form to V e(s;θV ).

18There are also large efficiency gains from weighting observations according to the estimated

variance of θ̂
k

and θ̂
G

. Weight observations t using the inverse of the estimated variance of
Π(b, s;θG,θk). Weighting can also be employed in the second estimation step, however in prac-
tice θG will be more precisely estimated than θk.
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Finally, we back out our estimate ĵ(si) for each si using:19

ĵ(si) = k(s; θ̂
k
)− β

∫
V e(s′; θ̂

V
)Ts(s

′|s; θ̂
τ
)ds′

When states are discrete the integral can be evaluated analytically, otherwise (de-

pending on the specification of Ts) the analytic expectation may still be feasible. If

not, numerical methods can be used. If the researcher fits a linear in parameters form

to k, such as k(s;θk) = h(s)Tθk, then it is convenient to assume the same functional

form for both V e and Ts: V
e(s;θV ) = h(s)TθV and E[h(st+1)T |st] = h(st)

Tθτ . j then

inherits this linear in parameters form: j(s) = h(s)T (θk − βθτθV ), simplifying both

estimation and inference.20

4.3 Large Sample Properties

I now discuss the large sample properties of the estimator, proving proposition 5. I

assume a
√
T consistent and asymptotically normal estimator is used for θ̂

τ
. Next,

θ̂
G

, θ̂
k
, and θ̂

V
result from a three step GMM procedure, and so Assumption 6 ensures

we can apply Theorem 6.1 from Newey and McFadden (1994). Therefore θ̂
G

, θ̂
k
, and

θ̂
V

are
√
T consistent and asymptotically jointly normal:

√
T


θ̂
G
− θG

θ̂
k
− θk

θ̂
V
− θV

 d−→ N


0 V ar(θ̂

G
) Cov(θ̂

G
, θ̂

k
) Cov(θ̂

G
, θ̂

V
)

0 Cov(θ̂
G
, θ̂

k
)T V ar(θ̂

k
) Cov(θ̂

k
, θ̂

V
)

0 , Cov(θ̂
G
, θ̂

V
)T Cov(θ̂

k
, θ̂

V
)T V ar(θ̂

V
)

 (9)

19We average ĵs over (s−i, s0). With a correctly specified model and infinite data there will be no
variation. In the spirit of Magnac and Thesmar (2002) β is identified from our exclusion restrictions
on j. We could set β such that ĵ is independent of s−i. This is left for future work.

20Other approaches are also possible, such as plugging the estimated continuation value∫
V e(s′; θ̂

V
)Ts(s

′|s; θ̂
τ
)ds′ into the inverse bid system and performing a final GMM step, treat-

ing ĵ as the only unknown. This is similar to the classic quasi-maximum likelihood approach to
CCP estimation.
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Where:

V ar(θ̂
G

) = M−1
1,θG

E[m1m
T
1 ]M−1T

1,θG
V ar(θ̂

k
) = M−1

2,θk
E[m̃2m̃

T
2 ]M−1T

2,θk

Cov(θ̂
G
, θ̂

k
) = M−1

1,θG
E[m1m̃

T
2 ]M−1T

2,θk
V ar(θ̂

V
) = M−1

3,θV
E[m̃3m̃

T
3 ]M−1T

3,θV

Cov(θ̂
G
, θ̂

V
) = M−1

1,θG
E[m1m̃

T
3 ]M−1T

3,θV
Cov(θ̂

k
, θ̂

V
) = M−1

2,θk
E[m̃2m̃

T
3 ]M−1T

3,θV

m̃2 = m2 −M2,θGM
−1
1,θG

m1 m̃3 = m3 −M3,θGM
−1
1,θG

m1 −M3,θkM
−1
2,θk

m̃2

M1,θG = E[∇θGm1] M2,θk = E[∇θkm2]

M2,θG = E[∇θGm2] M3,θV = E[∇θV m3]

M3,θk = E[∇θkm3] M3,θG = E[∇θGm3]

I use m1 as shorthand for m1(b, s;θG) defined previously, likewise for m2 and m3.

Importantly, these estimates are uncorrelated with θ̂
τ
, which was estimated using

state transition data only. Write V ar(θ̂) = V ar([θ̂
G
, θ̂

k
, θ̂

V
, θ̂

τ
]).

Finally, both F and j are known functions of these estimated parameters, and so

their asymptotic properties follow from the delta method (Mises, 1947):21

√
T

(
F̂ (υ|s)− F (υ|s)

ĵ(si)− j(si)

)
d−→ N


0

0
,


∇θGF 0

∇θkF ∇θkj

0 ∇θV j

0 ∇θτ j


T

V ar(θ̂)


∇θGF 0

∇θkF ∇θkj

0 ∇θV j

0 ∇θτ j



(10)

Where:

∇θGF = ∇θGb∗(υ|s; θ̂
G
, θ̂

k
)∇bG(b∗|s; θ̂

G
) +∇θGG(b∗|s; θ̂

G
)

∇θkF = ∇θkb
∗(υ|s; θ̂

G
, θ̂

k
)∇bG(b∗|s; θ̂

G
) ∇θkj = ∇θkk(s; θ̂

k
)

∇θV j = −β
∫
∇θV V

e(s′; θ̂
V

)Ts(s
′|s; θ̂

τ
)ds′ ∇θτ j = −β

∫
V e(s′; θ̂

V
)∇θTTs(s

′|s; θ̂
τ
)ds′

Additional covariance terms, such as Cov(ĵ(si), ĵ(s
′
i)) for si 6= s′i can be evaluated

21This requires both functions are continuously differentiable in the estimated parameters. For
ĵ this is trivial, while for F̂ this is not. Assumptions 3 and 6 and ensure G has a continuous first
derivative with respect to both b and θG. We must also assume that G has a continuous second
derivative. This, in conjunction with the inverse function theorem, ensures b∗(υ|s;θk,θG) has a
continuous first derivative with respect to θk,θG. This is because ξ(b|s;θk,θG) has a continuous
first derivative in θk,θG, and is (at least) locally invertible in b.
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similarly. To perform hypothesis testing we replace the asymptotic variances with

their finite sample approximations as standard.

In Appendix E I present the results of a simulation study examining the perfor-

mance of both semi-parametric and semi-nonparametric estimators. There are two

key findings from this exercise: First, the choice of instruments in the second stage is

extremely important. The initial state instruments are often weak and the resulting

estimator converges slowly, particularly when the model is incorrectly specified. Sur-

prisingly, while using additional relevant instruments is best, using no instruments

performs well, exhibiting very little bias and with low variance in small samples. Sec-

ond, the semi-nonparametric B-spline estimator performs very well. However com-

putation is slow, particularly when calculating multi-step variances. Meanwhile, the

misspecified semi-parametric estimators, such as simple polynomials, are subject to

some misspecification bias but still provide a viable alternative; particularly in small

samples when this bias is dwarfed by sampling uncertainty.

5 Application

I now apply this model and estimation procedure to data from Michigan Depart-

ment of Transport’s procurement auctions for highway construction and maintenance

contracts. This setting and data has been considered in several previous studies, in-

cluding Groeger (2014), Somaini (2020), Raisingh (2021), and GKS. Contracts are

allocated using simultaneous low-price sealed bid auctions, averaging around 45 con-

tracts auctioned in each round, with rounds taking place every 2-4 weeks. 56 percent

of bidders submit bids on more than one auction in a given round.

A large body of previous work has found evidence of cost synergies in highway

procurement, for example JP who find evidence of capacity constraints. Several stud-

ies, including GKS, have found evidence of complementarities in MDOT procurement

specifically. GKS find evidence that firms’ costs of taking on new projects increase in

their backlogs, but the more similar their current projects the less the dis-economies of

scale. Both Raisingh (2021) and Groeger (2014) find evidence of forward looking be-

haviour in the MDOT auctions. This suggests the need to use a dynamic multi-object

auction model to estimate costs.

I focus on road construction and paving projects. These projects either involve

hot-mix asphalt, concrete construction, or both. I consider how firm’s backlogs of
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both asphalt and concrete projects impact their costs, and how the two backlogs

interact. Given GKS’s findings, the expectation is that costs for all projects will be

increasing in both backlogs, but that the cost of an asphalt contract increases faster

in concrete backlog, and vice versa. Understanding the degree of complementarities

is important for auction design — if the cost synergies are large MDOT may benefit

from auctioning similar contracts together.22

5.1 Data

I use the same data as GKS, using their data on bids, contracts, and competing

firms. This includes information on almost every auction run between 2002 and 2014.

The contract data includes project descriptions, locations, the engineer’s estimate of

project cost, and the list of participating firms and their bids.

The firm level data includes details on the sub-sample of firms who submit at least

50 bids. This details the number and location of plants, and a description of the

type of company. Following GKS’s classification, a large bidder is one with at least

6 plants in Michigan. A regular bidder is one that submits more than 100 bids in

the sample period, otherwise they are designated a fringe bidder. The final sample

contains 36 regular bidders, 8 large (regular bidders) and 686 fringe bidders. I further

categorise regular bidders into one of three types of firm: General contractors, Paving

companies, and Construction companies.

Contract level descriptives are summarised in Figure 1. Around 20 asphalt projects

are auctioned simultaneously each period, predominantly highway maintenance projects.

But, these tend to be smaller projects, in both duration and predicted costs, than the

concrete and mixed projects. These contracts involve construction or bridge mainte-

nance projects, and so the engineers estimates exhibits a major right skew.

Bidder level descriptive statistics are summarised in Figure 2. Regular bidders’

backlogs are much larger than fringe bidders’. Asphalt backlogs are also generally

higher than concrete backlogs due to the larger number of asphalt projects. Back-

22In the current application I ignore the entry problem, in which firms maximise over combinations
of auctions to enter. Instead I assume that firms face negligible entry costs, as bid preparation
costs have been found to vary from $5,000 to $10,000, around %1 of the contract cost (Raisingh,
2021). The optimal entry combination is then non-probabilistic. Therefore, by taking an expectation
over maximised payoffs from the auctions bidders were observed entering I correctly recover the
equilibrium continuation value. This is a major simplification, but one that allows me to focus on
just the dynamic multi-object auction problem — an important first step.
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Figure 1: Auction level summary statistics.

Asphalt Concrete Both

Number 3563 712 1974
Auctions per Round 20.13 4.02 11.15

(p25 - p75) (5 - 30) (1 - 6) (3 - 17)
Project Duration (days) 134.11 216.52 200.08

(46 - 151) (79.75 - 261.25) (70 - 235.25)
Engineer’s Estimate ($100,000s) 12.61 22.4 19.88

(2.92 - 11.16) (3.65 - 12.16) (4.29 - 17.29)
Bidders per Auction 4.39 5.46 5.94

(2 - 5) (4 - 7) (3 - 8)
Average Bid ($100,000s) 12.75 19.93 18.28

(3.02 - 11.46) (3.78 - 11.85) (4.56 - 16.96)
Winning Bid ($100,000s) 11.98 21.19 18.69

(2.69 - 10.46) (3.34 - 11.46) (3.99 - 16.27)

Note: Aside from the number of auctions, the numbers presented are means. For mixed projects

the mean winning bid is higher than the mean bid. This is caused by the skewed project sizes.

logs generally exhibit rightward skews, indicative of the right skewed project sizes.23

Paving firms are closer to projects than fringe bidders because they have more plants.

Bidders bid on projects that are closer to them, and are more likely to win closer

projects due to more aggressive bidding.

5.2 Estimation and Results

I now apply and estimate the empirical model presented above. While the semi-

nonparametric approach is possible, I follow the literature and take a parametric

approach.24 I apply the full dynamic multi-object model to regular bidders only,

given that I need to observe sufficient observations of bidding to be able to estimate

23There is lag between contracts being won and their start date. I must assume that every project
begins before the next round of auctions. Otherwise while firms are bidding they already know that,
in several periods, their backlog will increase. This breaks the Markovian property of the game —
at any given time a firm must consider its current backlog and its backlog in every future period.
When bidding on a project that doesn’t begin for several months, the firm must consider how their
backlog is likely to change in those intervening months.

24The semi-nonparametric approach suffers from a curse-of-dimensionality. Unfortunately, I need
to allow the pseudo-static payoff k to depend on common/rival states and auction level observables.
Instead I parameterise the model to ensure parameters are interpretable and enable simple tests of
additive separability and myopic bidding.
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Figure 2: Bidder level summary statistics.

General Paving Construction Fringe

Plants 1.73 6.71 1.5 1.43
Bids per Round 2.07 2.8 1.8 0.24

(p25 - p75) (0 - 3) (0 - 4) (0 - 3) (0 - 0)
Backlog: Asphalt 5.57 5.61 2.97 0.24

(millions) (0.25 - 3.88) (0.96 - 7.6) (0.48 - 4.39) (0 - 0.2)
Backlog: Concrete 3.41 2.18 2.79 0.2

(millions) (0.18 - 3.41) (0.11 - 3.83) (0.23 - 1.35) (0 - 0.09)
Distance to project 105.65 84.18 121.42 119.27
Distance given Bid 71.21 47.03 87.18 69.33
Distance given Won 65.53 45.01 82.51 58.63

Note: Project locations are coded to the centroid of the county they are based in. Distance is

calculated as the minimum distance (across plant locations) between a firm and the project location.

A firm’s backlog at t is calculated as the sum, over current contracts, of the engineer’s estimate for

each project multiplied by the fraction of project duration remaining. Backlogs are calculated

separately for each type of project, assuming that mixed projects increase asphalt and concrete

backlogs equally. I exclude the first two years of the data to construct backlogs.

my objects of interest. I estimate separate parameters for each type of regular bidder.

I assume fringe bidders are myopic, and that their costs are additive.

In the low-bid auction the lowest bidder receives their bid and pays their private

cost, which involves minor relabelling of the model. The individual state is the Firm’s

backlog of asphalt and concrete contracts. The common state consists of the set of lots

on offer, including locations and other contract characteristics, such as size, duration,

and type.

5.2.1 The State Space Approximation

The state s should include every firms’ backlogs and information on every auction

held each period, which is computationally intractable. It is unlikely that firms would

track such a large state space. I follow the approach taken by Raisingh (2021) and

Aradillas-Lopez et al. (2022). They condense (s−i, s0) into a one dimensional index

λit, approximating the degree of competition a firm faces on a given day. For each

firm I only need to track three states — two backlogs and this competition index.

I construct λit using a random forest to predict the minimum rival bid using

(s−i, s0). λit is then a function of: i) the mean backlog of rival bidders, ii) the
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number of rival bidders, iii) the number of auctions held that period.25 Full details

of how the index is constructed, and additional results, are given in Appendix F.1.

5.2.2 First Stage

To simplify estimation I assume firms believe that, conditional on auction characteris-

tics and firms’ states, the probability they win one auction is independent of whether

they win another auction. This ensures the joint probabilities P can be written as

products of the marginal probabilities.26 Following Athey et al. (2011) I specify the

distribution of minimum rival bids as a three parameter Weibull distribution, with a

support parameter as 1
3

of the engineer’s estimate for that contract.27 The scale is

a function of auction-level characteristics and the competition index, denoted using

the vector xtl:

Prob(bilt ≤ min
i′ 6=i
{bi′lt} ; β1, α) = 1− e−(

blt−
1
3

exp(xltβ1)
)α

I assume that states transition according to an autoregressive order (1) process:(
λit

sit

)
= αi +α

(
λit−1

sit−1

)
+ εit

Where αi are firm specific intercepts, α is a 3× 3 dimension matrix, that is allowed

to vary by firm type, and εit is a white noise innovation.28

25The index assumption implies that a firm’s continuation value does not depend on which com-
bination of lots each rival bidder wins. Therefore the firm only has to consider 2L outcomes from
the round of auctions (which combination they win themselves), instead of all nL possible outcomes.
This is reasonable — it is unlikely bidders consider how their bids impact the likelihood of their
rivals winning different combinations of contracts. I do not take into account sampling uncertainty
in estimating the competition index.

26While I can reject the null hypothesis of independence, the extent of this dependence is ex-
tremely small. I introduce dependence in the below procedure using a Gaussian Copula to allow
correlation in these minimum rival bids. This correlation is allowed to depend on whether the con-
tracts are the same type or in the same county. The maximum estimated correlation between any
two winning bids is 0.0272, which I take as negligible.

27As discussed in Raisingh (2021) this is because several projects appear to have miscalculated
estimates. These are treated as outliers and removed. This occurred in around 0.1% of cases.

28By construction backlogs transition deterministically. However, not all projects are completed
at the same rate. Therefore I must take into account future deterministic backlogs in the state
variable. I assume this transition function for simplicity, as AR(1) processes are often used to model
the transitions of inclusive value indices.
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Results from the first step are given in Figure 8. I present three specification,

including varying sets of Fixed Effects. In later steps I use the County Fixed Effects

specification, dropping the time fixed effects. I estimate the shape parameter well

above one, ensuring that the Markup is monotonically increasing in bids. Note that

mean of the distribution is increasing in the scale. For each of the scale parameters

I include separate slope coefficients for each type of auction. For all three types of

auction the winning bid is increasing in the competition index: When λ is large, so

there is little competition, bids are less aggressive. Meanwhile the magnitude for

Asphalt projects is in line with the results presented in Raisingh (2021). Magnitudes

for concrete and mixed projects are similar.

We can interpret the coefficients on engineer’s estimate (EE) as returns to scale,

since the dependent variable (lowest rival bid) is normalised by EE. The persistent

negative coefficient on asphalt suggests increasing returns, in line with GKS and

Raisingh’s results.

5.2.3 Second Stage

I assume the pseudo-static pay-off is quadratic in backlogs. I take this approach,

despite the likely superior performance of a B-spline specification, due to the de-

creased computational intensity as well as making it easier to interpret the parameter

estimates: Testing for complementarities reduces to testing the significance of the

quadratic terms. I normalise backlogs by the standard deviation of each firm’s ob-

served backlogs, so that backlog effects are estimated using within firm variation.

Parameters can vary across the three firm types, so for a firm of type n the specifica-

tion for the pseudo-static pay-off is:

kn(st) = λitθ
λ
n + h(sit)

T θkn + λith(sit)
T θkλn

Where h(sit)
T =

(
sait scit (sait)

2 (scit)
2 sait × scit

)
I make use of additional moments to facilitate estimation. If st does not substan-

tially shift bidding behaviour there may be a weak instrument problem. This occurs

if a firm’s observed backlog does not vary relatively much, but they bid on many

contracts simultaneously so that the possible ex-post states sat vary much more than

st. In this case we are trying to estimate k in regions where there is little variation
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Figure 3: First Stage Results

Coefficient SE Coefficient SE Coefficient SE

Shape
log(α− 1) 2.029 0.001 2.083 0.001 2.093 0.001

Scale (= exltβ1)
Concrete -0.48 0.001 -0.484 0.002 -0.495 0.003
Asphalt -0.458 0.001 -0.449 0.002 -0.461 0.003
Both -0.44 0.001 -0.45 0.002 -0.462 0.003
Major Road -0.013 0.001 -0.007 0.001 -0.007 0.001
Bridge -0.001 0.001 0.005 0.001 0.003 0.001
MR ×λ 0.048 0.001 0.042 0.001 0.041 0.001
Bridge ×λ 0.027 0.001 0.024 0.001 0.021 0.001
Concrete ×λ 0.183 0.001 0.186 0.001 0.187 0.001
Asphalt ×λ 0.196 0.001 0.198 0.001 0.196 0.001
Both ×λ 0.172 0.001 0.18 0.001 0.181 0.001
Concrete × log(EE) 0.008 0.001 0.001 0.001 0 0.001
Asphalt × log(EE) -0.008 0.001 -0.011 0.001 -0.012 0.001
Both × log(EE) -0.006 0.001 -0.009 0.001 -0.01 0.001
Concrete ×λ× log(EE) -0.006 0.001 -0.004 0.001 -0.004 0.001
Asphalt ×λ× log(EE) 0.001 0.001 0.001 0.001 0.001 0.001
Both ×λ× log(EE) -0.002 0.001 -0.001 0.001 -0.001 0.001
Fixed Effects

County
√ √

Year
√

Month
√

Observations 193545 193545 193545

in our instrument. This would be a problem if firms are successfully smoothing their

backlogs.29

I include several additional instruments, or moment conditions, to ameliorate this

problem. Write −→s l as the amount a firm’s backlog will increase if they win lot l.

This is the engineer’s estimate of the project completion cost, split according to the

type of contract. I make the additional assumption E[υilt|s + −→s l] = 0, using the

ex-post state from only winning lot l as an additional instrument.30 Many more

potential instruments are available, using additional ex-post states as instruments.

29This problem is alleviated if we do not use normalised backlogs, using variation across bidders
to aid identification. However for this application this is undesirable.

30However, it is also possible that the larger the contract, so the larger −→s l, the larger the lot-
specific cost — meaning the instrument could be invalid. This is unlikely. First, I already control for
the size of the contract through the linear term in k. Second, the weighting procedure I use, weighting
observations by the inverse contract size, means this assumption is more reasonable. Finally, as the
system is over-identified I perform additional Hansen tests of over-identifying restrictions.
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For illustrative purposes I also consider a specification that makes use of ex-post

states from winning pairs of contracts, increasing the number of instruments ten-fold.

However this risks overfitting the first stage.31

Figure 4 presents the results from the second estimation step and includes estimates

from a least squares specification as well as three sets of instruments. Parameter

interactions with the competition index are included in Appendix F.2. Estimates from

the third column are used for the remainder of this application. Results are presented

in thousands of dollars. So, for example, every kilometre increase in distance between

a general contractor’s plant (t1) and the project increases costs by around $170.

The coefficients on backlogs can be interpreted as their effect on the pseudo-static

payoff function: Every one standard deviation increase in a paving company’s (t2)

backlog of asphalt projects increases their pseudo-cost (cost + expected future op-

portunity cost) by ≈ $870, 000. Coefficients can also be interpreted as how they

impact the aggressiveness of the firm’s bidding. The coefficients on linear backlogs

are all positive, suggesting firms bid less aggressively on larger projects. We cannot

interpret the quadratic coefficients from the second stage as evidence of returns to

scale. However they give evidence of non-additivities across lots: The null hypothesis

of additive values is rejected with p-value < 0.001.

The post-estimation tests demonstrate that the choice of instruments is important.

The Hansen test of over-identifying restrictions presented in column 4 rejects the null

at the 1% significance level, suggesting these additional instruments are invalid. I

cannot reject the validity of the additional instruments used in column 3. Likewise,

the Hausman test for endogeneity in column 1 also fails to reject. Meanwhile, the

adjusted Cragg-Donald statistic in column 2 suggests that the initial state alone is

a weak instrument. Therefore, even though we suspect the estimates from column 1

are inconsistent, they are almost certainly better estimates than those presented in

column 2. This suggests that problems of weak instruments may be more damaging

than failing to instrument at all.

31The distribution of contract sizes is very skewed, with a small number of extremely large
contracts. These contracts impact backlogs much more than small contracts, and attract higher
bids. These observations have a lot of leverage. To reduce the weight on these observations I weight
observations by the inverse of the engineer’s estimate of lot l (EEl). This is equivalent to using of
moment conditions of the form E[ υiltEEl

|st] = 0. Furthermore, it is standard to normalise bids and
associated costs by the size of the lot, which makes a similar assumption.
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Figure 4: Second Stage Results

Instruments none (OLS) sit sit +−→s ilt sit +−→s ilt +−→s imt
θ̂ SE θ̂ SE θ̂ SE θ̂ SE

Combinatorial
sat t1 488 19.3 495 346 451 26.6 463 20.4

t2 905 35 1940 2270 852 37 869 25.4
t3 113 5.61 114 1190 113 5.96 113 4.75

sct t1 392 17.2 254 826 406 20.1 398 17.6
t2 216 40.5 -4,380 9370 233 43.5 221 37.5
t3 55.8 6.2 -10.1 5010 57 6.6 56.7 5.74

(sat )2 t1 -4.36 1.85 -21.6 67.3 -0.967 2.72 -1.76 2.27
t2 -26 4.01 -221 481 -18 4.56 -21.5 3.35
t3 -0.236 0.0645 -0.189 24.6 -0.26 0.0698 -0.246 0.0629

(sct)
2 t1 -12 1.96 0.179 189 -15.9 2.4 -15.5 2.3

t2 -18.6 6.04 741 1530 -26.1 6.91 -23.9 6.34
t3 -0.245 0.0638 7.28 74.3 -0.344 0.119 -0.311 0.093

sat × sct t1 0.464 3.04 28.2 125 5.3 3.23 7.03 3.15
t2 54.9 12.5 1.27 431 73.1 13.8 72.5 10.2
t3 0.277 0.176 -21.6 103 0.553 0.366 0.482 0.279

Lot specific
Distance t1 0.159 0.0814 0.238 0.187 0.188 0.0779 0.164 0.0823

t2 0.0597 0.104 -0.0511 0.599 0.0999 0.108 0.0667 0.102
t3 0.159 0.0946 -0.018 2.87 0.166 0.0943 0.159 0.094

Tests (stat) (p-val)
Hansen 36.5 (0.192) - (-) 19 (0.393) 637 (0)
Cragg-Donald - 0.00257 178 119
R2 0.6 -10.8 0.597 0.599

Note: I include county and firm × contract type fixed effects. Col 1 Hansen test is a Hausman test

of endogeneity, using instruments from col 3. Figures are given in 000s of dollars. The two-step

consistent standard errors are clustered within bidder days. I winsorise the bottom percentile of

estimated Γl(bilt)
∇bΓl(bilt)

, since beliefs in the tails of the distribution are likely to be poorly estimated.

Estimation uses T = 3919 observations.

5.2.4 Third Stage

After forming the expected maximised period pay-off Π̂(bt|k̂; st) I evaluate the ex-ante

value function by approximating the conditional expectation over bt using a linear in

parameters prediction of Πt given h(st).
32 This ensures the ex-ante Value Function,

for a firm of type n, can be written as: E[Π̂i(bt|k̂; st)|st] = µi+h(st)
T θVn . Observations

are weighted according to their inverse variance, using var(θ̂kn). The quadratic form

32This assumption is technically incompatible with the parametric assumption made above. How-
ever we can test the extent of the misspecification error using a standard RESET test. I am unable
to reject the null of no specification error (at the 10% significance level) using a RESET test of order
10. Meanwhile no explicit parametric assumptions were made on the distributions of b or υ.
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of h and the AR(1) transition process means I can write E[h(st)|st−1] = h(st−1)T θτn,

where θτn is a |h| × |h| dimensional matrix function of αn. This also implies I can

write j(sit) = h(sit)
T θjn.

Figure 5 presents results from the third estimation step. Costs are increasing linear

backlogs for all three types of firm. However, the magnitudes are much smaller than

the linear coefficients estimated in the second stage. This suggests large anticipated

opportunity costs from high backlogs. This result is sensible since projects have very

long durations.

By considering the quadratic terms we see that general contractors only exhibit

increasing returns to scale, or increasing returns to specialisation, in concrete con-

tracts. Meanwhile, both paving and construction companies exhibit increasing returns

for both types of contracts, but with a negative cost interaction. Taking on concrete

(asphalt) projects come with additional costs for these firms already specialised in

asphalt (concrete) projects. In Appendix F.3 I consider how my results compare to re-

sults from misspecified dynamic single-object, and static multi-object models. I find

that the dynamic single-object model under-estimates the degree of non-additivity

across lots. The static multi-object model over-estimates the effect of backlogs on

costs, mistaking expected future costs for present costs.

5.3 Counterfactual

I now consider how procurement costs and efficiency change when contracts are allo-

cated using sequential first-price auctions. This is an interesting counterfactual as it

speaks to the importance of the ‘exposure problem’ as well as the value of ‘batching’.

Furthermore, many empirical dynamic auction papers assume contracts are auctioned

sequentially anyway, making this a useful comparison for researchers.

Theoretical results suggest sequential allocation will be less efficient than simul-

taneous allocation (batching).33 Bidders do not know what types of contracts will

be auctioned in the near future, making it more difficult to exploit cost synergies.

However, batching contracts but not allowing firms to place combinatorial bids also

limits their ability to exploit synergies. Sequential allocation may improve efficiency

by giving bidders greater control over their cost synergies, reducing the likelihood

33See Akbarpour et al. (2020) as an example. I ignore that collusion is easier to sustain in
sequential auctions (Hendricks and Porter, 1989), further increasing procurement costs.
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Figure 5: Third Stage Results

Object j(si) V (s) k(s)

θ̂ SE θ̂ SE θ̂ SE

λ t1 0 (-) 5.39 0.63 6.79 0.763
t2 0 (-) 15.6 1.58 6.47 1.69
t3 0 (-) 6.81 0.713 1.81 0.228

sat t1 123 7.01 -451 26.6 451 26.6
t2 285 11.3 -839 37.1 852 37
t3 40 1.92 -103 6.07 113 5.96

sct t1 107 5.35 -405 20.1 406 20.1
t2 89.1 11.9 -207 43.5 233 43.5
t3 15.6 1.91 -57.8 6.63 57 6.6

(sat )2 t1 -0.337 1.29 1.74 2.73 -0.967 2.72
t2 -9.26 2.46 18.6 4.65 -18 4.56
t3 -1.34 0.147 -2.13 0.292 -0.26 0.0698

(sct)
2 t1 -7.6 1.13 15.5 2.41 -15.9 2.4

t2 -14 3.38 23.4 6.95 -26.1 6.91
t3 -0.479 0.102 -0.262 0.202 -0.344 0.119

sat × sct t1 1.38 1.52 -6.7 3.25 5.3 3.23
t2 33.4 7.12 -80.4 13.9 73.1 13.8
t3 0.432 0.199 -0.237 0.405 0.553 0.366

Fixed Effects
Firm

√ √

that bidders accidentally win too many or too few contracts (the exposure problem).

These effects will be more pronounced the larger the degree of complementarities

across lots. The effects of this alternate procurement mechanism are ex-ante unclear.

5.3.1 The Counterfactual Mechanism

I now briefly discuss how I simulate equilibrium bidding under the counterfactual

mechanism. See Appendix F.4 for full details. Contracts are auctioned sequentially,

in random order, within each 14 day period. Consistent with the estimated model I

assume projects begin before the next auction. I use the same competition index λit

to capture changes in competition within these periods. Firms have beliefs about the

probability they win any given lot, conditional on lot characteristics and λit. Firms

place bids conditional on their beliefs, backlogs, and their continuation value, defined

as in the main model.34 I find equilibrium beliefs and value functions using fixed

34I assume firms only place bids on the set of auctions they actually bid on. Given my assumption
of negligible entry costs, firms were only observed bidding on the contracts they have the largest
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point iteration: I repeatedly simulate the auction process until value functions and

the distribution of winning bids converges.

5.3.2 Results

Figure 6 presents estimates of the average cost per contract for firms and MDOT, in

thousands of dollars, under the simultaneous auction regime and the counterfactual

sequential auction regime. The key takeaway is that sequential auctions decrease

efficiency and raises procurement cost. Procurement costs are estimated to increase

by an average of $19, 000 per contract (1.3%), while for firms completion costs increase

by an average of $110, 000 per contract (9.4%). This suggests the batching effect

dominates the exposure effect. This arises because the cost complementarities are

relatively small. The non-additivity in payoffs across lots only explains 11.5% of the

variation in payoffs, while the remainder is lot specific variation. Furthermore, this

figure includes both the positive complementarities between same type contracts, and

the negative complementarities between different type contracts. Consequently, the

exposure risk is only small.

Finally, the increase in procurement cost is much smaller than the increase in

completion costs because firms face more competition for each contract. At any one

time, instead of n firms compete for L contracts there are n firms competing for 1

contract, unsure of when any future contracts will be auctioned. However, this finding

strongly relies on the assumption of a non-collusive equilibrium.

Figure 6: Counterfactual Results

Mechanism Outcome Estimate ($000s) S.E.

Simultaneous Auctions Procurement Cost 1470 -
Completion Cost 1170 4.28

Sequential Auctions Procurement Cost 1489 3
Completion Cost 1280 22.6

Note: The results are based on 60 draws of parameters from their estimated asymptotic distribution.

Equilibrium Beliefs and Value Functions are computed for each draw.

cost advantages in. If their cost advantages were mostly additive, such as due to low υilt draws, they
will have the same advantage under the sequential mechanism, and so bidding on this set of lots will
remain optimal. Therefore my estimates can, to an extent, be considered lower bounds on costs.
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6 Conclusion

In this paper I did three things: First, I set-up a dynamic multi-object auction model

and proved that the model primitives are identified from standard bidding data. Sec-

ond, I proposed a computationally convenient estimation procedure to overcome the

technical challenges of estimating model primitives in this setting. Finally, I ap-

plied the model to data from Michigan Department of Transport’s procurement data

and evaluated the efficiency and revenue of holding repeated rounds of simultaneous

auction relative to auctioning all contracts sequentially.

This paper was motivated by the prevalence of such repeated, multi-object auc-

tions. Significant complementarities between auctioned objects have been found in

both the dynamic single-object literature, and the static multi-object literature, most

notably in JP and GKS. However, these two types of model had not, until this point,

been unified in a single framework. Future work should attempt to take into account

the firms’ entry decisions, as this was a major simplification in this paper.
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Appendices

A Proof of Proposition 3

In this Appendix I essentially extend Proposition 1 from JP to the multi-object case,

proving Proposition 3 from the main text. For the remainder of this section I use the
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definition of k = Cj + βV, and equivalently K(s) = J(si) + βV (s).

Proof: 1. Necessary First Order Conditions are given by:

∇bΓ(b∗|s)(υ − b∗) = Γ(b∗|s)−∇bP (b∗|s)Bsj− β∇bQ(b∗|s)AsV

2. Left multiplying by Γ(b∗|s)T∇bΓ(b∗|s)−1 yields: Γ(b∗|s)T (υ − b∗) =

Γ(b∗|s)T∇bΓ(b∗|s)−1[Γ(b∗|s)−∇bP (b∗|s)Bsj− β∇bQ(b∗|s)AsV]

3. Substituting Γ(b∗|s)T (υ − b∗) into equation 2 gives the result.

Given Proposition 3 we take an expectation over the expected stage payoff, with

respect to observed bids, to show that the ex-ante value function can be written as a

function of the distribution of equilibrium bids and K(s) only.

B Proof of Proposition 4

I now prove that Ψ(IS − βTΩ)−1C has rank Si − 1. The proof is in three parts.

First, I establish the rank of Ψ, then find its null space. I then demonstrate that the

intersection of this null space and the image of (IS − βTΩ)−1C only contains a single

element.

B.1 Rank of Ψ

First, define the partial ordering �∗ such that if si � s′i then s �∗ s′. This simply

extends the partial ordering of the individual state to the overall state.

Define a ‘component’ Sc as a subset of S that is ‘connected’ by this partial ordering.

Formally, s, s′ ∈ Sc if and only if there exists a non-directed path between the states;

that is if there exists a (finite) sequence of states beginning with s, ending with

s′ where for each pair sn, sn+1 in this sequence either sn �∗ sn+1 or sn �∗ sn+1. By

definition s0 does not vary within a component, and in general there is one component

corresponding to each element of S0. The Sc components form a partition of S.
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Finally, denote m̃in(S) as the subset of S, such that ∀s ∈ m̃in(S) : @ s′ ∈ S : s ∈
Sa(s′). This is primarily for notational convenience, and may not coincide with the

minimal elements of S. Instead, this is the (potentially empty) set of states that never

occur as possible ex-post states. Intuitively, pay-offs from ending in these states are

be identified.

B.1.1 Additional Lemmas

Lemma B.1. From any two distinct, non-maximal, states, s and s′, if s′ �∗ s then

there exists a state sa such that sa ∈ Sa(s) & sa /∈ Sa(s′)

This states that if one non-maximal state is not ‘higher’ in the partial ordering

than another, their set of ex-post states cannot perfectly overlap. The proof examines

whether the maximal element of Sa(s) (when bidder i winning every lot, denoted salli)

can be an element of Sa(s′). I exploit that Sai (si, s0) forms a lattice, with minimal

state corresponding to winning no lots, and maximal state corresponding to winning

every lot.

Proof: 1. Suppose s′ �∗ s. Therefore either s �∗ s′, or the states are incomparable.

2. If s �∗ s′ they are in the same component, so s0 = s′0. Assumption 5 iii)

implies the maximal (win all) element of Sai (si, s0) is ‘greater’ than the

maximal element of Sai (s′i, s0), hence maximal(Sai (si, s0)) /∈ Sai (s′i, s0).

3. If s and s′ are incomparable, then s and s′ either belong to different com-

ponents, or the same component. If they belong to different components

then by definition Sa(s) and Sa(s′) must be mutually exclusive.

4. If s and s′ are incomparable but in the same component then Assumption

5 iii) ensures maximal(Sai (si, s0)) and maximal(Sai (s′i, s0)) are incompa-

rable. Therefore, it cannot be that maximal(Sai (si, s0)) ∈ Sai (s′i, s0), since

Sai (s′i, s0) is a lattice it requiresmaximal(Sai (si, s0)) � maximal(Sai (s′i, s0))

Lemma B.2. Ψ(s)As has rank at least 2 if, for all s,υ, l, Γil(b(υ, s)|s) ∈ (0, 1)

The proof proceeds by first showing that rank(Ψ(s)) is weakly greater than two,

then using the full rank property of the transformation matrix As.
35

35In general Ψ(s)As has rank L. Essentially, each state gives us L pieces of information, rather
than just two pieces of information. However, proof that the rank is always L has proven elusive.
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Proof: 1. Denote by Ψ̃ the L × L(n − 1)L−1 sub-matrix of Ψ(s) consisting of the

columns of Ψ(s) corresponding to outcomes in which player i wins exactly

one lot.

2. Row l, column a of Ψ̃ is strictly positive for columns corresponding to

outcomes wa in which bidder i wins lot l This is because the probability

that i wins lot l, and no other lot, is strictly increasing in bl.

3. Row l, column a of Ψ̃ is strictly negative for columns corresponding to

outcomes wa in which i does not win lot l. This is because the probability

lot l is won, and no other, is strictly decreasing in bm for m 6= l.

4. Any two rows of Ψ̃ are linearly independent: Each row contains one

positive entry, each in a distinct column.36 Therefore, Ψ̃, and hence Ψ(s)

have rank ≥ 2.

5. Matrix As is a rank nL transformation matrix for any non-maximal s.

Therefore, from step 4, Ψ(s)As for non-maximal s has rank at least 2.

B.1.2 Rank(Ψ) = S − Sc − |m̃in(S)|

I show that as we stack these Ψ(s)As matrices for non-maximal s, the rank increases

by at least two each time. However, by definition columns corresponding to elements

in m̃in(S) are all zero, ensuring the rank is deficient by at least |m̃in(S)|. Likewise,

for each submatrix of Ψ made up of rows corresponding to states that are all within

the same component (denoted by Ψc, a |Sc| × S matrix), rows all sum to zero. This

ensures each Ψc is rank deficient by at least one, and so Ψ is rank deficient by at least

Sc.

Proof: 1. Order elements of S (likewise, columns of Ψ) according to the partial or-

dering �∗. Incomparable states are ordered at random. So, for each s, the

furthest left non-zero column of Ψ(s)As is in the column corresponding

to the ex-post state in which player i wins every lot salli .

2. Focus on one component, Sc. Find the ‘smallest’ state within Sc, sc1 (i.e.

right most column index of Ψ). This must be a minimal element of Sc.

36This only holds for L ≥ 3. For L = 2 we must also assume E[Γ1 + Γ2] 6= 1.
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3. Find the second smallest state sc2, which may also be a minimal element.

Vertically stack the matrices Ψ(sc1)Asc1
and Ψ(sc2)Asc2

, for Ψc
{1,2}.

4. Ψc
{1,2} has rank ≥ 4. Lemma B.2 ensures that both matrices have rank 2,

while lemma B.1 ensures that each row of Ψ(sc1)Asc1
is linearly independent

of each row of Ψ(sc2)Asc2
. This last point arises because lemma B.1 ensures

that since sc1 �∗ sc2 there must be at least one column of non-zero entries

in Ψ(sc2)Asc2
that matches up to an all-zero column of Ψ(sc1)Asc1

.

5. Continue this process for each non-maximal state in component Sc. At

each stage, based on the ordering of elements in S at step 1, and from

lemmas B.2 and B.1, Ψ(scn)Ascn must always contain at least one non-zero

column that matches up to an all-zero column of Ψc
{1,2...n−1}. Typically

this is the furthest left column, corresponding to sc allin . Therefore, the

rank increases by at least 2 each step.

6. The final matrix Ψc
{1,2...} has non-zero entries somewhere in each of the |Sc|

columns corresponding to states in this set, except for columns correspond

to elements of m̃in(Sc). These columns are all zeros — there is always

zero probability of ending in these states. As the rank of this matrix

increased by ≥ two at each additional non-maximal state, and because

we have at least as many non-maximal states as maximal states, this

matrix must have rank ≥ |Sc| − |m̃in(Sc)| − 1. The rank cannot exceed

this, and must be strictly less than |Sc| − |m̃in(Sc)| because the row sum

for each row of this final matrix equals zero, a property inherited from

the fact that QT ι = 1.

7. Any two components Sc and Sc′ are mutually exclusive. Therefore, the

two matrices for any two components Ψc
{1,2...} do not share non-zero

columns. As we stack these matrices across different components, the

ranks sum together at each step.

8. Therefore rank(Ψ) =
∑

Sc⊂S |Sc| − |m̃in(Sc)| − 1 = S − |m̃in(S)| − Sc
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B.2 nullspace of Ψ

B.2.1 The |m̃in(S)| elements

Ψ contains only zeros in columns corresponding to states in m̃in(S). Any vector y

containing non-zero entries only in rows corresponding to elements of this set is in

this null space. Denote this set of vectors Y1, with |m̃in(S)| distinct elements.

B.2.2 The Sc elements

Consider the vector y such that ys = ys′ if s and s′ belong to the same component.

Denote this set of vectors Y2, containing Sc distinct elements. As established above,

columns of the submatrix Ψc
{1...|Sc|} that correspond to states in different components

contain all zeros, from the definition of a component.

Therefore, for any y ∈ Y2 we have Ψcy = 0. Entries of y are constant across rows

that correspond to the non-zero entries of Ψc
{1...|Sc|}. This holds for any c. Therefore,

as we stack the Ψc
{1...|Sc|}s into Ψ we will have Ψy = 0 for any y ∈ Y2.

B.3 Image of (IS − βTΩ)−1C

I have established that the null space of Ψ is given by Y1 ∪ Y2. I now show that the

intersection of this space and the image of (IS−βTΩ)−1C only contains the constant

vector, denoted ιSi . This result requires three additional lemmas:

Lemma B.3. For any y ∈ Y1 we have Ωy = 0.

Proof: 1. Recall that Ω(s) = Eb[Q(b∗|s)T − Γ(b∗|s)T∇bΓ(b∗|s)−1∇bQ(b∗|s)|s]As

2. Asy = 0 for y ∈ Y1, since As selects elements of y corresponding to

possible ex-post states, given beginning in s. But y only contains non-

zero entries for states that are never observed as ex-post states.

Lemma B.4. For any y ∈ Y2 we have Ωy = y.

Proof: 1. For y ∈ Y2 Asy = ysι2L , where ι2L is a 2L × 1 vector of ones. This is

because As selects the elements of the vector y that correspond to states

that are possible outcomes from an auction round beginning in state s.
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By definition these ex-post states are all in the same component, while

y is constant within components.

2. As the rows of Q(b∗|s)T sum to one, we have Eb[Q(b∗|s)T |s]ι2L = ι2L .

3. As rows of ∇bQ(b∗|s) sum to zero (derivative of a vector with rows

summing to one) we have: E[Γ(b∗|s)T∇bΓ(b∗|s)−1∇bQ(b∗|s)|s]ι2L = 0

4. Therefore Ω(s)y = ysι2L for y ∈ Y2. Stacking over s yields the result.

Finally, for y ∈ Y2 we can write y = M ȳ Where ȳ is an Sc × 1 vector containing

the constant elements of y from component. Meanwhile M is an S × Sc dimensional

matrix that contains a 1 in a row corresponding to state s and column corresponding

to component c if s ∈ Sc, and zero otherwise. Each row of M contains a single 1.

Lemma B.5. Let the matrix N be any Sc×Sc submatrix of (I−βT )M that is formed

by selecting one row from each of the Sc components. N is non-singular.

Proof: 1. Select Sc states, one from each component, and denote the corresponding

set of rows of by M. The sub-matrix of interest is denoted MM,.−βTM,.M

2. MM,. = I. This is because we chose one row of M associated with each

component. Each row of M contains a single 1, therefore so must MM,..

Because every row is associated with a different component, each row

contains a 1 in a different column.

3. Elements of the Sc×Sc sub matrix TM,.M are just transition probabilities,

so TM,.MιSc = 1. This is because right multiplying by M causes us to

sum over states within a component. For a particular row t we have

element c of the row vector Tt,.M is equal to
∑

s : sc=sc̃ P (s|st). That is,

the probability, given ending a period in state st, that they begin the

next period in component c.

4. Diagonal entries of the matrix I − βTM,.M are strictly positive, as β ×
a probability is strictly less than 1 (for β < 1). Likewise, off diagonal

entries are weakly negative, as we have −β × a probability. Last, rows

must sum to 1 − β because rows of both I and TM,.M sum to 1. This

ensures this matrix is strictly diagonally dominant. Therefore, from the

Levy–Desplanques theorem, the matrix must be non-singular.
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B.3.1 Image((IS − βTΩ)−1C) ∩ null(Ψ) = ιSi

The proof employs the result TιS = ιS (rows of a transition matrix sum to one).

The proof proceeds by first demonstrating that the image of (IS−βTΩ)−1C does not

intersect Y1. Next, that the intersection with Y2 only contains the constant vector.

Proof: 1. Suppose there exists an x such that for some y ∈ Y1 we could write

y = (IS − βTΩ)−1Cx. Equivalently, (IS − βTΩ)y = Cx.

2. From Lemma B.3 this implies y = Cx. In turn, from the definition of C

this requires x contains zeros in every entry except the first.

3. However this cannot be the case, since we always normalise this first entry

to zero. Therefore image((IS − βTΩ)−1C) ∩ Y1 = ∅

4. Next, Suppose there exists an x such that for some y ∈ Y2 we could write

y = (I − βTΩ)−1Cx. Equivalently (I − βTΩ)y = Cx

5. From Lemma B.4 Cx = (I − βT )y = (I − βT )M ȳ. In matrix form:

(
M − βT̄ −C

)(ȳ

x

)
= 0

Where T̄ = TM , the probability of transitioning to any component from

any state. If (M−βT̄ ,−C), the S×(SC +Si) matrix has rank SC +Si−1

then there is a unique y and x where this relationship holds.

6. I now show the first column of −C is linearly independent of (M − βT̄ ).

−C.,1 contains −1 in every element associated with states such that si =

s1
i and zeros otherwise. No linear combination of the columns for the

corresponding rows of (M − βT̄ ) can match these zeros. Choose Sc rows

of (M−βT̄ ) such that each row is associated with a state from a different

component. E.g. rows such that in each component si = sSii — the ‘final’

individual state. Call the corresponding Sc × Sc submatrix of M − βT̄
N . From Lemma B.5 N is non-singular. No Sc × 1 vector z exists such

that Nz = 0. Therefore columns of (M − βT̄ ) are linearly independent

of −C.,1. By concatenating this column, the rank increases by one.

7. Repeat this process for columns n = 2...Si − 1 of −C. That is, every

column except the final column which is the only column to contain non-
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zeros in entries associated with sSii .37 Each of these columns must be

linearly independent of M − βT̄ - no linear combination of its columns

can match the zero entries of −C.,n, since any Sc × Sc submatrix that

consists of one row from each component must be non-singular.

8. Columns of −C are linearly independent. So, at each step n the rank

increases by 1. Therefore rank(M − βT̄ ,−C) ≥ SC + Si − 1.

9. (ȳ = ιSc ,x = (1 − β)ιSi) lies in the null space of (M − βT̄ ,−C). This

is because (M − βT̄ )ιSc = (1 − β)ιS while we also have C(1 − β)ιSi =

(1−β)ιS. Appeal to the rank-nullity theorem for Image((IS−βTΩ)−1C)∩
null(Ψ) = ιSi

C Proof of Proposition 1

In this Appendix I prove Proposition 1, which states that under the assumptions of

the game, and under Conjecture 1, a Symmetric Markov Perfect Equilibrium exists.

First I prove that, conditional on Conjecture 1, a Pure Strategy Bayesian Nash

Equilibrium exists in the stage game. I then show that the equilibrium pay-off in

the stage game is consistent with the continuation value, employing Kakutani’s fixed

point theorem. This requires showing the existence, convex-valuedness, and upper

hemicontinuity of the continuation value. While I assume entry is costless in my

identification framework, bidders still make a strategic decision over which auctions

to enter. Therefore I consider the entry game when discussing equilibrium existence.

Proof: Equilibrium of the entry game: player i chooses entry decision d to max-

imise their expected payoff, taking an expectation over rivals’ entry decisions

given their strategies. This is a standard game of incomplete information.

A symmetric equilibrium in distributional strategies exists (Milgrom and We-

ber, 1985). Because types are atomless, existence of a Pure Strategy equi-

librium follows from their purification result. This equilibrium may not be

37This assumes one individual state exists within each component (I used sSi
i ). This holds if

S = S0×
∏
i Si. This is not necessary — the only requirement is that at each step n I can select one

state from each component such that the corresponding rows of −C.,n are all zero.
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unique, so the value function may not be continuous. Continuity arises by

augmenting entry strategies to be a function of the realisation of a public ran-

dom variable (Fudenberg and Maskin, 1991). Public randomisation enables

players to coordinate equilibria. Conditional on this public random variable

the set of equilibrium pay-offs is convex (Aumann, 1974).

Equilibrium existence of the dynamic game requires that the equilibrium pay-

off in the stage game is consistent with the continuation value.38 That is, can

we write the ex-ante value function VE
t , stacked over s, as a function of VE

t+1,

so that VE
t = Ω(VE

t+1) (existence). Stationarity requires the correspondence

Ω has a fixed point: VE = Ω(VE).

Existence of VE
t = Ω(VE

t+1): Taking an expectation over Equation 1 with

respect to υit ensures we can write the ex-ante value function recursively. Ex-

istence then follows from the assumption that pay-offs are bounded, ensuring

the set Ω(VE
t+1) is non-empty.

(non-)Uniqueness of Ω(VE
t+1): The possibility of multiple equilibria in the

entry game imply the value function is non-unique. So the ex-ante value

function is also non-unique. Fortunately Ω must be convex valued, as the set

of equilibrium pay-offs, conditional on the public random variable, is convex.

Upper-hemi continuity of Ω(.): The continuation value is continuous in

VE
t+1, taking an expectation over the transition process. Consider the condi-

tional value function, conditional on entry decision d̄: W̃i(d̄,υit, st;σ−i) =

max
b

{
Γi(b, d̄;σ−i)

T (υit − b) +Qi(b, d̄;σ−i)
T [Ji(st) + βVi(st;σ−i)]

}
Continuity of W̃t in VE

t+1 is guaranteed by conjecture 1, which requires equi-

librium expected pay-offs are continuous in Ji+βVi. The value function is then

Wi(υit, st;σ−i) = max
d

{
W̃i(d,υit, st;σ−i)

}
. Upper-hemi continuity of Wt in

W̃t, and hence in VE
t+1, arises from our public random variable (Fudenberg

and Maskin, 2009).39 Upper-hemi continuity of VE
t arises from the ex-ante

38Symmetry of the dynamic equilibrium arises because equilibrium in the stage game is symmetric,
with strategies depending on states not identities or time periods.

39Public randomisation ensures that the set of equilibrium pay-offs is convex. Public randomi-
sation means Wt is the convex hull of possible equilibrium pay-offs from entry, W̃t. Therefore, so
long as W̃t is compact valued, Wt is upper hemicontinuous (Charalambos and Aliprantis, 2013).
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value function taking an expectation over states.

Existence of a stationary dynamic equilibrium: In order to show exis-

tence of a stationary equilibrium we must show that there exists a fixed point

of the correspondence VE = Ω(VE). As Ω() is non-empty, convex valued,

and upper-hemi continuous, we can apply Kakutani’s fixed point theorem.

Therefore, a Markov Perfect Equilibrium exists.

D Extensions

D.1 Second-Price Auctions

My identification results extend, almost trivially, to second price auctions. I do not

discuss estimation of the second price model. However the estimation procedure

presented in Section 4 can easily be applied, making use of the inverse bid system

presented below.

D.1.1 Setup

In the second price setting i wins lot l at time t if bilt > max
i′
{bi′lt}. As in the text,

let Γ(b|s) denote the L × 1 equilibrium marginal probabilities of winning each lot.

Define vectors P and Q similarly. The Value Function is given by: Wi(υit, st;σ−i) =

max
b

{
Γi(b;σ−i)

T (υi − b̃(b; st)) + Pi(b;σ−i)
TJi(st) + βQi(b;σ−i)

TVi(st;σ−i)
}
(11)

Where element a of Vi is Via(st;σ−i) =
∫
s

∫
υ
Wi(υ, s;σ−i)dF (υ|s)dT (s|sat ). b̃(b; st)

gives the expected second highest bid, given that bilt is the highest. Since the cdf of

the highest rival bids is Γl(x|s), we can write Γl(bl|s)b̃l(b; s)) =
∫ bilt
bl

b̄l∇blΓl(b̄l|s)db̄l.

D.1.2 First Order Conditions and Inverse Bid System

Rewrite the maximand: Γ(b|s)Tυ−
∑

l

∫ bl
bl
b̄l∇blΓl(b̄l|s)db̄l+P (b|s)J(s)+βQ(b|s)V (s)

Compact valuedness comes from pay-offs being drawn from a compact set.
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Differentiate for FOCs: 0 = ∇bΓ(b∗|s)(υ−b∗)+∇bP (b∗|s)J(s)+β∇bQ(b∗|s)V (s).40

We then invert the FOCs for the inverse bid system:

ξ(bit|J, βV ; s) = bit −∇bΓ(b∗|s)−1[∇bP (b∗|s)Bsj +∇bQ(b∗|s)AsβV]

This is similar to the inverse bid system presented in text, omitting the mark-up term

∇bΓ(b∗|s)−1Γ(b∗|s). Consequently, conditional on j and βV, the distribution of lot

specific values F is point identified from the empirical quantiles of ξ(bit|J, βV ; s).

D.1.3 Extension of Proposition 3

I now extend Proposition 3 to the second price case:

Π̃(b∗|υ; s) =Γ(b∗|s)T (b∗ − b̃(b∗; s))

+ [P (b∗|s)T − Γ(b∗|s)T∇bΓ(b∗|s)−1∇bP (b∗|s)]Bsj

+ [Q(b∗|s)T − Γ(b∗|s)T∇bΓ(b∗|s)−1∇bQ(b∗|s)]AsβV

This is similar to the expression given in Proposition 3, except that the optimal

lot specific surplus term is given by b∗ − b̃(b∗; s) instead of ∇bΓ(b∗|s)−1Γ(b∗|s).

Proof is omitted due to its simplicity — simply substitute the inverse bid function

ξ(bit|J, βV ; s) for υ into the maximand of the value function in equation 11.

Employing the identity P (b|s)TBs = Q(b|s)TAsC, and taking an expectation over

the observed bids, write the ex-ante value function as:

V e(s) = Φ̃(s) + Ω(s)[Cj + βV] Where Φ̃(s) = Eb[Γ(b∗|s)T (b∗ − b̃(b∗; s))|s]

And Ω(s) was defined in the text. Stack this equation over s for: V = T Φ̃ +TΩ[Cj +

βV] Which we can invert for: V = (IS − βTΩ)−1[T Φ̃ + TΩCj].

40This condition can equivalently be derived by requiring that, at the optimum, b∗lt equals the
marginal expected pay-off from winning lot l, conditional on bids for lots m 6= l.
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D.1.4 Identification

As in the main text I impose the mean zero property of υ for:

0 = Eb∗ [ξ(b∗; s, (j,V))|s] = Eb∗ [b
∗|s]− Eb∗ [∇bΓ(b∗|s)−1∇bQ(b∗|s)|s]As[Cj + βV]

= Υ̃(s)−Ψ(s)[Cj + βV]

Stack over s and substitute in V for: 0 = Υ̃−βΨ(IS−βTΩ)−1T Φ̃−Ψ(IS−βTΩ)−1Cj.

There is a unique solution to this system (j is point identified) if and only if the LS×Si
matrix Ψ(IS − βTΩ)−1C has rank Si − 1. This matrix is the same as in the main

text. Proposition 4 holds in this case as well, ensuring the rank condition.

D.2 Binding Reservation Prices

I now introduce binding reservation prices. A reservation price is binding if, in equi-

librium, there is non-zero probability of winning a lot at the reservation price. This

also extends to endogenous entry with zero entry costs — where reservation prices

are necessary to prevent arbitrarily low bids. Binding reservation prices do not pose

a substantive problem, though do introduce additional mathematical complexity.

In the presence of reservation prices a bidder with a low value may choose not to

bid strictly above the reservation price. This results in corner solutions as bids clump

at the reservation price. We lose point identification as the FOCs no longer point

identify υi. This is a problem, even in a single object context.

The identification argument presented below diverges from the argument presented

in 3. Instead, it is closer to the estimation method presented in Section 4. Identi-

fication is demonstrated in an additional step. First I show that F is (partially)

identified conditional on (J , V , β), but in particular it is partially identified condi-

tional on J + βV . I then show that the object j(si) + βV (s) is partially identified,

(for some si it is only bounded). This is shown using quantile moment conditions:

Instead finding the j + βV such that E[ξ(b; s, j + βV )|s] = 0 I find it such that

P (ξl(b; s, j + βV ) ≤ 0|s) = 0.5, imposing a zero conditional median assumption. Fi-

nally, I show that conditional on the identification of F and J + βV , V is identified,

and hence J can be backed out given an assumption about β.
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D.2.1 Changes to the Model

Denote the reservation price as R, which may vary across lots, bidders, and time.

Denote player i’s entry decisions by dit with entry ditl = 1 if they enter lot l, and

zero otherwise. Adjust G,Γ, P and Q to be functions of bids and entry — if a player

does not enter a lot, they lose that lot with probability 1. Identification requires an

additional assumption:

Assumption 7. ∂Γil(bi,di|s)
∂bim

= 0 for m 6= l

I assume the probability an individual wins any given lot, conditional on s and σ−i,

only depends on their bid for that lot. This implies ∇Γi(bi,di|s) is a diagonal matrix.

This assumption was not previously necessary for identification. If ties happen with

zero probability or if tie breaking is exogenous, then this assumption will hold.41

Finally, I assume the lot specific values have zero conditional median, replacing the

previous zero conditional mean assumption. I am then able to prove the following:

Proposition 6. Given assumption 1, 2, 3, 4, and 7, both Fi(.|s) and Ki(s) are non-

parametrically partially identified. k(sa) is point identified if we observe the individual

bidding b > R on a lot that may yield pay-off k(sa).

That is, we will point identify the truncated distribution Fi(.|υ >= A1; s), as well

as the objects Fi(A1; s)− Fi(A2; s) and Fi(A2; s) for known A1, A2.

While I assume players play pure strategies conditional on entry, I allow for the

possibility that players play mixed strategies in their entry decisions. We use bid-

ders’ entry decisions to bound the payoffs of unentered auctions, exploiting that, at

the equilibrium mixing strategy, players can not strictly prefer to enter any other

combination of auctions.

D.2.2 Identification of F , conditional on K.

Under assumptions 1 - 4, and 7, and conditional on K being point identified, the

cdf F is non-parametrically partially identified. Similar to case 6.3.1.2 described in

41For mathematical convenience I assume ties occur in equilibrium with zero probability. The
argument below can be easily extended to allow for ties at the reservation price. All that changes is
that it introduces a discontinuity in the inverse bidding system at the reservation price, so that as
the bidder goes from bidding the reserve to just above it, their payoff changes discontinuously. This
slightly changes how we identify F , as we must essentially introduce an additional discrete choice of
whether the bidder bids the reservation compared to bidding just above it. This additional discrete
choice then restores the (upper-hemi) continuity of equilibrium, payoffs.
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Athey and Haile (2007), we invert observed bids such that bl > R, point identifying

υl. For bids at the reservation price and for non-entered auctions we can then find

bounds on υl.

First, reformulate the problem to include entry decisions. The player’s problem is

to decide which auctions to enter (d), then set their bids (b) to maximise payoffs,

subject to their bids being weakly above reservation prices. The Lagrangian and

corresponding FOCs for this problem, conditional on entry d∗, is given as:

L(b,d∗,υ,λ|s) = Γ(b,d∗|s)T (υ − b) + P (b,d∗|s)TK + λT (b−R)

0 = ∇bΓ(b∗,d∗|s)(υ − b∗)− Γ(b∗,d∗|s) +∇bP (b∗,d∗|s)TK + λ∗

Entry ll of ∇bΓ(b,d|s) and entry la of ∇bP (b,d|s) are as they were in section 3

if dl = 1, and normalised to 0 otherwise. Rearrange this equation for:

ξ(b∗,d∗,λ|K; s) = b∗ +∇bΓ(b∗,d∗|s)−1[Γ(b∗,d∗|s)−∇bP (b∗,d∗|s)K]

−∇bΓ(b∗,d∗|s)−1[λ∗]

At the true K we have ξl(b
∗,d∗,λ∗|K; s) = υl. But we do not observe λ∗. Therefore,

define ξ(b∗,d∗|K; s) = b∗ +∇bΓ(b∗,d∗|s)−1[Γ(b∗,d∗|s)−∇bP (b∗,d∗|s)K]. Next, I

consider what can be inferred for each of the four possible entry/bidding possibilities:

i) bl > R, ii) bl = R, iii) dl = 0, and the null case l /∈ L.

i) l such that b∗l > R: Any entry l such that b∗l > Rl, λ
∗
l = 0. By Assumption 7,

entry l of ∇bΓ(b∗,d∗|s)−1[λ∗] equals zero, and ξl(b
∗,d∗|K; s) = υl is point identified.

ii) l such that b∗l = R: For entry l with b∗l = Rl, λ
∗
l > 0. From Assumption 7 entry

l of ∇bΓ(b∗,d∗|s)−1[λ∗] is greater than zero, and we attain the following bound:

υl ≤ ξl(b
∗,d∗|K; s) = Rl + ∇bΓ(b∗,d∗|s)−1[Γ(b∗,d∗|s) − ∇bP (b∗,d∗|s)K]l (For

vector M , [M ]l denotes row l). As (b∗,d∗) maximises expected payoffs, payoffs are

(weakly) higher from playing (b∗,d∗) than not entering auction l, playing (bl−,dl−)

(the only difference between these actions is that dl−l = 0). Therefore:

Γ(b∗,d∗|s)T (υ−b∗)+P (b∗,d∗|s)TK ≥ Γ(bl−,dl−|s)T (υ−bl−)+P (bl−,dl−|s)TK.

This rearranges for: υl ≥ Rl − 1
Γl(b

∗
l ,d
∗
l |s)

[P (b∗,d∗|s)− P (bl−,dl−|s)]TK.

iii) l such that d∗l = 0: Consider l such that dl = 0. They must attain a greater

payoff from dl = 0 than from bidding the reservation price. Consider alternate action

(bl+,dl+) where the only difference between this and (b∗,d∗) is that bl+l = Rl and
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dl+l = 1. Therefore: Γ(b∗,d∗|s)T (υ − b∗) + P (b∗,d∗|s)TK ≥ Γ(bl+,dl+|s)T (υ −
bl+) + P (bl+,dl+|s)TK Rearranging this for: υl < Rl − 1

Γl(b
l+
l ,dl+l |s)

[P (b∗,d∗|s) −
P (bl+,dl+|s)]TK

D.2.3 Identification of k under binding reservation prices

Under assumptions 1 - 4, and 7, the function k is partially identified up to standard

normalisations. k(s̄) is point identified at s = s̄ if we observe bidding strictly above

R on a combination of goods that would have the outcome sa = s̄. I prove this by

exploiting multiple observations for every state to establish a necessary rank condition,

similar to the one presented in Section 3. Whereas the previous proof employed a

condition on the mean of ξ(b,d), this proof employs a condition on the marginal

quantiles of ξ(b,d). I set k(s) such that the median (or some other quantile) is equal

to zero. Binding reservation prices cause our FOCs to break down, so that at the

true k (= Cj + βV) we can only write:

υ ≤ ξ(b,d|k; s) = b +∇bΓ(b,d|s)−1[Γ(b,d|s)−∇bP (b,d|s)Ask]

Which only holds with equality for rows l with bl > R. Stack these over s for:

υ︸︷︷︸
LS×1

≤ ξ(b,d|k) = b︸︷︷︸
LS×1

+∇bΓ(b,d)−1︸ ︷︷ ︸
LS×LS

[Γ(b,d)︸ ︷︷ ︸
LS×1

−∇bP (b,d)︸ ︷︷ ︸
LS×S

k] (12)

ξ(b,d|k) =


ξ(b1,d1|k; s1)

...

ξ(bS,dS|k; sS)

 b =


b1

...

bS



Γ(b,d) =


Γ(b1,d1|s1)

...

Γ(bS,dS|sS)

 ∇bP (b,d) =


∇bP (b1,d1|s1)As1

...

∇bP (bS,dS|sS)AsS


I require a rank condition on ∇bΓ(b,d)−1∇bP (b,d). If this has full rank then each

ξ implies a unique k, so that if I observed just one observation of υ I could solve

for k. Note that E[∇bΓ(b,d)−1∇bP (b,d)] = Ψ, the matrix presented in text. Im-
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portantly, the proof presented in B.1, that Rank(Ψ) = S − Sc − |m̃in(S)| extends

trivially to ∇bΓ(b,d)−1∇bP (b,d). The proof never exploited the fact we had taken

an expectation, and entirely used the partial ordering structure of the state space.

With binding reservation prices and entry, certain states may never be outcomes

that could have occurred with positive probability, so the corresponding elements of

k are not point identified. These entries of k do not appear in the above equation,

having a coefficient of zero. These states will only be partially identified.

Next, fix an LS × 1 vector of probabilities p.By definition of the marginal CDF:
p1

...

pLS

 =


F1(υ̃1|s1)

...

FL(υ̃LS|sS)

 =


Eυ1 [ I[υ1 ≤ υ̃1] |s1]

...

EυL [ I[υL ≤ υ̃LS] |sS]


Employ a change of variables, taking expectations over the observed random variables

(b,d) instead of υl. This change is only valid for state-lot combinations such that

when υl = υ̃l, bl > R, when ξl(b,d; k) = υl holds with equality and the mapping from

b to υl is continuous, smooth, and monotonic.42 Drop rows where this condition fails,

as we lose identifiability of corresponding elements of k. If, even when υl is as large as

υ̃l, the elements of K(s) corresponding to winning lot l are so small that they never

bid strictly above R on lot l, these elements of K(s) are not identified. This yields:

p =


Eυ1 [ I[υ1 ≤ υ̃1] |s1]

...

EυL [ I[υL ≤ υ̃LS] |sS]

 =


Eb,d[ I[ξ1(b1,d1; k) ≤ υ̃1] |s1]

...

Eb,d[ I[ξL(bS,dS; k) ≤ υ̃LS] |sS]


Proving point identification of k requires we show that the pth quantiles of ξ(B,D|k)

equals υ̃ only at the true k. But, from our rank condition, a unique ξ(B,D|k) implies

a unique k. Therefore, only a unique k is such that the pth quantiles of ξ(B,D|k)

equals υ̃. Therefore, there exists a unique k such that this equation holds.43

42This is essentially an application of the Law of the Unconscious Statistician. Monotonicity of
the inverse bid function for bids strictly above the reservation price is discussed in A.

43It should be noted that k is unique up to |m̃in(S)|+Sc elements of k that must be normalised
to to the rank deficiency of the matrix Ψ. These elements are the entries associate with states
s ∈ m̃in(S) that are never observed as possible ex-post states, and one additional state from each
component - associated with si = s1

i . We will see in Appendix D.2.4 that these normalisations do
not impact the identification of j.
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D.2.4 Identification of j and βV

I have proven the non-parametric (partial) identification of Fi and Ki = Ji + βVi. I

also previously established that the ex-ante value function is known function of beliefs,

Fi, and Ki = Ji+βVi, all of which are identified. Therefore so too is the ex-ante value

function. The continuation value V is then a function of the ex-ante value function

and the transition process, both of which I established are identified. Finally, fixing β,

Ji is a function of Ki, β, and Vi, ensuring that Ji is also non-parametrically partially

identified.44

D.3 Endogenous Entry

In this Appendix I introduce endogenous entry in which entry is costly and υilt is not

observed before entry, though I assume that the entry decisions of other players is

observed before bidding.45 I focus on the case with non-binding reservation prices,

though it will be clear how the results from Appendix D.2 extend to this case.

The identification argument presents a minor generalisation on the one presented

in the main text. The argument proceeds as follows: F is non-parametrically point

identified conditional on k = Cj + βV. As in the previous Appendix, k remains non-

parametrically identified conditional on the identification of Γ and P using observed

variation in s, relying on our rank condition on the matrix Ψ. Given identification of

k,Γ, and P , Proposition 3 ensures that the expected payoff from each entry structure

is also non-parametrically identified. Given these expected payoffs, the entry problem

is then a multinomial discrete choice problem, so I rely on standard results for the

identification of entry costs. Identification of expected entry payoffs and costs ensures

the ex-ante value function, and hence the continuation value V, is identified, thereby

identifying j = C−1(k− βV).

44If there are values of Ji(st)+βVi(st) that are only bid on at the reservation price, then the value
function is only partially identified. However, this non-identified region will generally be very small.
Likewise, elements of k corresponding to states which never appear as possible ex-post states are
zeroed out in this equation, so it does not matter how they are normalised. Finally, the normalised
elements corresponding to one (minimal, with si = s0

i ) element from each component Sc ⊂ S. These
normalisations constitute location shifts of Π for all elements in that component, as we essentially
made the normalisations because only marginal payoffs are identified. Finally, when we back out j,
we will normalise j(s0

i ) = 0, in line with these location normalisations.
45Allowing the ‘entry structure’ to be unknown before bidding does not change anything sub-

stantive. We simply alter the objects Γl P and Q to additionally take an expectation over the entry
decisions of other players.
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I proceeds as follows: In Appendix D.3.1 I introduce changes to the main model,

and demonstrate that the previous identification results for F and k also apply. In

Appendix D.3.2 I show that the distribution of entry costs is non-parametrically

identified, and finally that V, and hence j are also identified.

D.3.1 Changes to the Model

All objects below are functions of the state s. Conditional on an entry structure D
and having observed the lot specific values υ the agent places bids to maximise the

following:

Π(b|υ;D) = Γ(b|D)T (υ − b) + P (b|D)TJ +Q(b|D)TβV

Given the agent’s behaviour conditional on entry, the agent’s problem is to choose

an entry structure Di to maximise their expected pay-off. I assume that agent’s

entry costs, a 2L × 1 vector c, are drawn independently and privately from C(.|si)
(independent of s−i). I assume that C is common knowledge.

The agent observes s and, given knowledge of F and k and their equilibrium beliefs,

maximises an expected pay-off associated with any given entry structure:

W (Di|c) = ED−i [Eυ[max
b
{Π(b|υ;D)} ]|Di]− cDi

The continuation value associated with ending the period in state sa is then:

V (sa) = Es[Ec[max
Di
{W (Di|c)} |s]|sa]

Identification of F conditional on the identification of K

The Inverse Bid System, as given in equation 4, where the state variable has simply

been augmented to include the entry structure. Hence F remains non-parametrically

identified conditional on the identification of Γ, Q, and k.

Identification of k

As in the main text, we can take a conditional expectation of the inverse bid system,

setting this equal to zero: E[ξ|s,D] = 0. We can then again stack this system of
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equations across states and entry structures for 0 = Υ − Ψk. Non-parametric point

identification of k then requires the same rank condition on Ψ proven previously.46

Identification of Eυ[Π̃(b∗|υ; s,D)]

Recognise that Proposition 3 continues to hold, and so we can write the expected

maximised payoff, conditional on D, as

Π̄(s,D) = Eυ[Π̃(b∗|υ;D)] =Γ(b∗|D)T∇bΓ(b∗|D)−1Γ(b∗|D)

+ [Q(b∗|D)T − Γ(b∗|D)T∇bΓ(b∗|D)−1∇bQ(b∗|D)]Asβk

D.3.2 Identification of C

At the entry stage, the agent sets their entry structure Di such that:

ED−i [Eυ[max
b
{Π(b|υ;D)} ]|Di]− cDi ≥ max

D′i 6=Di

{
ED−i [Eυ[max

b
{Π(b|υ;D)} ]|D′i]− cD′i)

}
Similar to how we identify G, because we observe entry decisions, we therefore ob-

serve the equilibrium distribution of Di for all i. Therefore, following from the above,

ED−i [Eυ[ max
b
{Π(b|υ;D)} ]|Di] is non-parametrically point identified. Normalising

that the entry cost of entering zero auctions is always zero, I now exploit the exclusion

restriction that the distribution of c is independent of s−i. Therefore, variation in s−i

leads to known variation in ED−i [Eυ[max
b
{Π(b|υ;D)} ]|Di], thereby tracing out the

distribution C(.|si), ensuring we have non-parametric identification.47

The ex-ante value function V e(s) = E[max
Di

{
ED−i [Eυ[max

b
{Π(b|υ;D)} ]|Di]− cDi)

}
],

and hence the continuation value V (s) are then also non-parametrically identified,

which in turn yields identification of the flow payoff function j.

46We normalise elements of k corresponding to states which are either the minimal element of
their component, or never appear as possible ex-post states. By definition, there will be Sc+|min(S)|
of these. In Appendix B.1 we found previously that Ψ has rank S − Sc − |min(S)|.

47Technically, identification is partial: The set of states is finite, so we will only actually be point
identifying C(.|si) at a finite set of points across its support. We can achieve full point identification
either by assuming discrete support, or introducing one continuously varying element of s−i.
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D.4 Stochastic Combination Value

I now present two identification results for the case when the combination value is

stochastic, when j(s) is not a function but a probability distribution. I focus on the

static setting for two reasons. First, these results are novel even in the static case.

Second, as we have seen throughout this paper, identification of the primitives of a

generalised static model (where primitives are allowed to depend on s0 and s−i), is

sufficient for identification of the primitives of a dynamic model. This is because

identification of the Pseudo-Static payoff function k implies identification of j.

I focus on two cases: First, when J is a function of low-dimensional un-observables

M , such as stocks, whereM ≤ L. Second, I consider a case whenM > L, but elements

of the unobservable vector are constant over time (e.g. constant parameters).

These extensions both centre on the theme of finding some way to reduce the di-

mensionality of the unknowns. The key idea is this: Each observation of bidding on

an auction yields L pieces of information. Therefore, in order to have any hope at

point identifying unobservables, there cannot be more than L unobservables. How-

ever, as in the main text, we can combine observations of bidding across period (or

bidders) to identify unobservables that remain constant across the observations.

D.4.1 Case 1: Known function of low dimensional un-observables

Suppose the combinatorial value can be written as J(mt) where mt ∈M is an unob-

served (potentially) stochastic random variable of dimension M ≤ L. I require that

J : M → J is a known function (with range J ⊂ R2L). Importantly, some elements

of m may represent fixed parameters associated with the functional form J .

Normalise the first element of this vector valued function (corresponding to player

i losing every lot) to zero, so that I focus on the marginal combinatorial pay-off

J(m)2:2L − J(m)1. The expected payoff is Π(b) = P (b)TJ(mt)− Γ(b)Tb. Necessary

first order conditions are given by: 0 = ∇bP (b)J(mt)−∇bΓ(b)b− Γ(b).

The problem is then to show m is point identified. I make two assumptions about

this function that are sufficient for mt to be point identified:

Assumption 8. i) J(m) is continuous and continuously differentiable for all mt.

ii) For any m and m′ there exists a set U ⊂
{

1, 2, ... , 2L
}

with |U| = M that
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defines the vector value function FU where FUn (m) = JUn(m) such that

(m−m′)T (FU(m)− FU(m′)) > 0

The second part of this assumption is essentially an extension of strict monotonicity

to the case of 2L dimensional functions in M dimensional variables. The assumption

states that for any two distinct m and m′ we can find a set of rows of J(.) such

that this inner product is strictly positive.48 A key result of this property is that

the function J(.) is a bijection: Each m maps onto a unique J, and the condition

ensures that for any two distinct m and m′ it must be the case that J(m) 6= J(m′)

(since otherwise we could not find a U such that (m−m′)T (FU(m)−FU(m′)) > 0).

This ensures that the inverse J−1(.) exists, such that for all m ∈M m = J−1(J(m)).

Furthermore, because J(.) is continuous and continuously differentiable everywhere,

so that J−1(.) must be differentiable everywhere, J−1(.) must also be continuous.

Proposition 7. Under assumptions 1, 2, & 8, mt is identified up to normalisation.

For example, if the second a third elements of mt are parameters describing the

mean and standard deviation of m1t, then mt is identified up to location and scale.

The proof requires arguing that with L equations in only M unknowns there exists

a unique solution to the system. The proof proceeds by recognising that the set of

vectors J which satisfy the FOCs is convex. From the continuity of the inverse

function J−1(.) and the (generalised) intermediate value theorem, this implies that

the set of m for which the FOCs hold is path connected. So, there must be a point

arbitrarily close to mt for which the FOCs hold. However, that ∇bP (b) has rank L

and the function J(.) is invertible implies the system is locally unique.

Proof: 1. Consider the set of 2L×1 dimensional vectors which satisfy the system of

equations ∇bP (b)J = ∇bΓ(b)b + Γ(b). This set, denoted J̃, is convex,

and hence path-connected, as for two vectors J,J′ ∈ J̃:

λ∇bP (b)J + (1− λ)∇bP (b)J′ = (λ+ (1− λ))(∇bΓ(b)b + Γ(b))

∴ ∇bP (b)(λJ + (1− λ)J′) = ∇bΓ(b)b + Γ(b)

48This property is satisfied when, for example, each element of J is weakly monotone in elements
of m, and strictly monotonic in at least one element.
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2. This implies the image of the intersection of J̃ and J defined by the

continuous function J−1(.) (the set of m for which the FOCs hold) is also

be path connected. This follows from the generalised intermediate value

theorem, which states that for a continuous function f : X → Y, if the

set X is path-connected, then so is the image f(X).

3. If the intersection of J̃ and J contains more than one element, then for

any m which satisfies the FOCs, there is an arbitrarily nearby m′ which

also satisfies the FOCs.

4. However, from the inverse function theorem, the FOCs are locally unique.

The Jacobian of these FOCs, with respect to m are given by:

∇bP (b)∇mJ(m)

This has rank M because ∇bP (b) has rank L (it consists of L linearly

independent rows), and J(m) is invertible (so ∇mJ(m) has rank M).

Therefore it is locally invertible, and so the set of m which satisfy the

FOCs contain a single element.

D.4.2 Case 2: When M > L

When M > L we can combine information across observations, instead of identifying

everything from a single observation, so long as enough elements of M are constant

across observations. This is relevant when mt can be decomposed into (m1
t ,m

0),

where m0 are fixed parameters. Suppose M ≤ 2L, and in particular, |m1
t | < L.

Consider a pair of FOCs from two separate periods t1 and t2. Importantly, I still

impose assumption 8. Combine the two sets of first order conditions as follows:(
∇bP (bt1) 0

0 ∇bP (bt2)

)(
J(mt1)

J(mt2)

)
=

(
∇bΓ(bt1)bt1 + Γ(bt1)

∇bΓ(bt2)bt2 + Γ(bt2)

)

Uniqueness of the solution to this system follows the same logic as the previous

proof with the added note that ∇(mt1 ,mt2 )

(
J(mt1)

J(mt2)

)
has rank 2|m1

t | + |m0|, so that

I can appeal to the inverse function theorem for local uniqueness.
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This result allows us to add a large number of additional parameters to the function

J(.) which are identified by using variation across observations. This employs a similar

philosophy used to prove the identification results in the main paper.

E Monte Carlo Simulation

I now present the results of a Monte-Carlo study evaluating the estimator proposed

in 4. As discussed in GKS, the difficulty in simulating these games is that solving for

equilibrium bidding strategies is intractable. Meanwhile, numerically finding equilib-

rium bidding strategies — by iterating over equilibrium beliefs and actions until a

fixed point is found — is extremely computationally intensive.

For simplicity I focus on the case where bidders are bidding against a parametric set

of beliefs. That is, I essentially take the equilibrium as given. Furthermore I focus on

an equilibrium in which equilibrium beliefs do not depend on each bidder’s individual

states {sit}i∈N. This is similar to many applications seen in practice, including GKS,

Backus and Lewis (2016), Groeger (2014), Balat (2013).

E.0.1 Set up

Every period there are two auctions (L = 2) and two types of object, denoted x and

y. Each lot contains one type of object, and one lot of each type of good is auctioned

each period. Some lots contain 10 units of the good, while other lots contain only 5.

The set of available lots is denoted (zx, zy): Lot 1 contains zx units of x, lot 2 contains

zy units of y. Therefore the possible characteristics of lots Xt = {(5, 5), (10, 5), (5, 10)}
give the common state. For simplicity, this transitions stochastically where each states

occurs with equal probability, independent of previous states.

States consist of bidders’ stocks of the two objects, which come in integer values:

sxit ∈ { 0, 1, ... , 100}, likewise for good y. At the end of each period bidders consume

3 units of good x with probability 0.4 and three units of good y with probability 0.3,

until their stocks fall to 0. A bidder’s combinatorial flow pay-off is given by:

j(sx, sy) = θ1 log(sx + 1) + θ2 log(sx + 1) log(sy + 1)

Where (θ1, θ2) are parameters set to 20 and 10 respectively. θ1 ensures pay-offs are

not additively separable over time, while θ2 > 0 ensures the lots are complements.
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The lot-specific pay-offs are drawn from:

υit ∼ N

(
0 900zxt 100zxt z

y
t

0 , 100zxt z
y
t 400zyt

)

I take as given the equilibrium distribution of the highest rival bids, which follows

a type 2 extreme value distribution. The mean of this distribution is given by the

average (across states) marginal payoff from each lot (≈ (17.1zx, 12.5zy). The variance

is tuned to the variance (across states and lot-specific payoffs) of the marginal payoffs

from winning each lot. The shape is set to 0.1.

I perform value function iteration to find the continuation value under this distri-

bution of pay-offs and these equilibrium beliefs. Having found a continuation value,

I can then simulate a dataset. Given the set-up the state space consists of 30, 000

unique elements. Focusing on a large number of elements is intended to simulate my

real world application when the state space will be treated as continuous.

I simulate 1, 000 datasets, with T ∈ { 300, 1000, 10, 000} observations uniformly

sampled from the state space. I consider 3 estimators: 1) a semi-parametric estima-

tor using the same functional form as j, 2) a quadratic polynomial, and 3) a semi-

nonparametric cubic spline. For the spline, I use uniformly spaced knots, setting the

knots to ensure at least
√
T observations per knot. For each estimator I consider

estimates from using no instruments, the baseline “initial state” instruments, and all

the possible ex-post states as instruments. The first stage is estimated using correctly

specified maximum likelihood.

E.0.2 Results

Results are presented in figure 7. Each estimator yields estimates of ĵ(si) for each

si ∈ Si. I then fit the correctly specified j across these states, extracting θ̂1 and θ̂2.

The semi-nonparametric estimator (3) outperforms the two semi-parametric es-

timators, even in relatively small samples. However, it is very computationally in-

tensive, with estimation taking almost 100 times longer than the semi-parametric

estimators. Semi-parametric estimator (1), which fits the true functional form of j to

both k and V , performs poorest. This is because we should not expect either k or V

to inherit the functional form of j. Likewise, estimator (2), the flexible polynomial,

performs reasonably well despite being misspecified. The choice of instruments is
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found to be particularly important. Using no instruments (∅) out performs the initial

state instrument. This arises for the combination of two reasons. First, except in very

large samples, the initial state instruments suffers from weak instrument problems, as

variation in the initial state does not induce enough variation in bidding behaviour.

Second, the degree of bias in the least squares estimation is expected to be small, de-

pending on the correlation between Γl(bl) and υl′ . This correlation is relatively small

because bl varies much more with other variables, such as υl and the state variables.

Finally, using the ex-post states as instruments performs much better, but does not

dominate (nor is dominated by) the no-instrument estimator.

Figure 7: Monte Carlo Study

Instrument ∅ st {sat }
θ T Mean SD rMSE Mean SD rMSE Mean SD rMSE

(1) θ1 300 5.12 10.9 18.5 4.08 11.9 19.9 3.48 11 19.8
1, 000 5.71 5.12 15.2 4.02 6.42 17.2 4.66 5.75 16.4

10, 000 6.03 3.09 14.3 4.71 3.48 15.7 5.14 3.27 15.2
θ2 300 5.62 1.34 4.58 6.57 1.57 3.78 6.23 1.4 4.02

1, 000 5.78 0.631 4.26 6.75 0.852 3.36 6.35 0.766 3.73
10, 000 5.85 0.348 4.16 6.82 0.439 3.21 6.4 0.411 3.63

(2) θ1 300 27.2 6.89 9.98 -75.4 126 158 24.2 14.6 15.1
1, 000 27.2 3.93 8.19 -73.7 57.5 110 24.7 7.51 8.85

10, 000 27.4 1.49 7.51 -69.9 17.7 91.6 24.6 2.64 5.29
θ2 300 12.1 0.988 2.31 39.6 20.1 35.8 12.6 2.05 3.28

1, 000 12.2 0.6 2.24 38.5 8.55 29.8 12.6 1.1 2.8
10, 000 12.2 0.221 2.23 37.5 2.7 27.7 12.7 0.361 2.7

(3) θ1 300 19.7 6.13 6.14 28 108 108 18.5 11.1 11.2
1, 000 20.1 3.26 3.26 21.9 33.1 33.2 19.4 5.81 5.84

10, 000 21.2 1.32 1.81 22.2 4.18 4.72 20.3 2 2.03
θ2 300 10.4 0.897 0.968 9.11 16 16 10.7 1.69 1.82

1, 000 10.2 0.48 0.535 10.3 5.26 5.27 10.5 0.867 0.983
10, 000 9.99 0.196 0.196 9.94 0.647 0.65 10.1 0.31 0.344

Note: The true values for θ1 and θ2 are 20 and 10 respectively. The three instruments
are: ∅ = no instrument (OLS), st = initial states, {sat } = all the possible ex-post states,
given the period began in st. Estimator (1) is a semi-parametric estimator, using the true
functional form of j to fit k and V . Estimator (2) fits a cubic polynomial, while Estimator
(3) fits a cubic spline.
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F Estimation Details and Additional Results

F.1 Constructing the Index Function

The index is constructed as in Aradillas-Lopez et al. (2022) and Raisingh (2021),

using most of the same covariates for the random forest as in Raisingh (2021).

The aim is to predict the minimum rival bid in each auction using various elements

of the state. To capture rivals’ states I classify the rivals of each bidder according to

their distance from the bidder using distance bins (near, 0-25km, medium, 25-50km,

and far, >50km), and take the average general backlog of rivals within each bin. The

features I include as predictors to form λit are: The number and average backlog of

rivals in each distance bin, the number of asphalt / concrete projects auctioned that

period, as well as interactions between the type of contract (concrete/asphalt) and

the number of concrete / asphalt projects auctioned each period.

I now detail the random forest I use to estimate the competition index λ, given the

covariates outlined above. For a detailed description of the algorithm, see Appendix

B.2 of the full random forest algorithm Raisingh (2021). The key distinction, relative

to a standard random forest, is the need to avoid over-fitting when making predictions

on the training data. Broadly, the algorithm proceeds as follows:

1. Split the data into K equal sized folds.

2. Estimate K random forests, each with Q trees, on data from K−1 of the folds.

3. Combine the K random forests.

4. Repeat steps 1− 3 L times, yielding L random forests, each with Q×K trees.

5. Combine the L random forests.

Following Raisingh (2021) I set L = 24, K = 2, and Q = 50. So every data-point is

used to train around 1
3

of trees. Figure 8 gives a variable importance plot, highlighting

which variables have the most predictive power for the minimum rival bid, and so

what most strongly influences the competition index. As in Raisingh (2021), rival

backlogs have the most predictive power, followed by the number of rivals. Further

away rivals appear to more strongly influence the index, perhaps because they are

likely to be larger firms.
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Figure 8: Variable Importance Plot

Note: This plot shows the reduction in sum of squared residuals that occurs from splitting the data

on each variable. Higher numbers demonstrate more predictive power.

Because the index is auction specific I average across auctions to form the period ×
bidder specific competition index. Since the most important predictors are all period

× bidder specific the index varies much more across periods than with periods.

F.2 Additional Results

F.2.1 First Stage

Figure 9 plots the observed distribution of minimum rival bids against the estimated

distribution. The three parameter Weibull distribution fits the data well.

F.2.2 Second Stage

Figure 10 displays additional results from the second estimation step, demonstrating

how the pseudo-static cost function varies with the competition index λit. The esti-

mated parameters can be interpreted as follows: Holding fixed a general contractor’s

(t1) backlog of asphalt projects, every one standard deviation in λ, as competition

decreases, increases the opportunity cost of winning by around $90, 000. Estimated
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Figure 9: First Stage Fit

parameters generally have the expected signs, with pseudo-costs increasing in the

degree of competitiveness (coefficients are positive (negative) for positive (negative)

coefficients in Figure 4).

Furthermore, the estimated interaction parameters are jointly significant (p <

0.01) for all but the specification with weak instruments. Under the exclusion restric-

tion that j(si) is independent of λi, we can therefore reject the null hypothesis that

β = 0, rejecting the myopic model. The association between the degree of competition

and bidding behaviour is strong, even when we account for equilibrium beliefs.

F.3 Comparison to Misspecified Models

I now compare estimates of j(si) from the dynamic multi-object model presented

above, to two misspecified models: A dynamic single object model, and a static

multi-object model. Results are presented in figure 11.

F.3.1 Static Model

The static model is nested within the dynamic multi-object model, imposing β = 0.

Estimation involves the same first and second steps presented in section 5.
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Figure 10: Second Stage Results: λ interactions

Instruments none (OLS) sit sit +−→s ilt sit +−→s ilt +−→s imt
θ̂ SE θ̂ SE θ̂ SE θ̂ SE

Combinatorial
sat × λt t1 84.6 23.8 361 510 87.2 27.4 91.9 25.7

t2 157 35.8 1230 2670 136 37.4 146 32.5
t3 16.4 5.45 1170 2580 16.5 6.48 15.8 5.11

sct × λt t1 55 15.6 207 931 68 16.6 57.4 16.3
t2 -56 39.6 6640 15,700 -80 45.7 -75 39
t3 3.03 4.87 -1,260 3160 2.17 5.2 3.29 4.87

(sat )2 × λt t1 -2.5 3.03 -74.1 147 -2.19 3.5 -4.06 3.2
t2 -8.38 4.87 -586 1370 -4.91 5.94 -7.38 4.93
t3 0.0262 0.124 -65.4 123 0.126 0.144 0.0681 0.123

(sct)
2 × λt t1 -2.19 3.38 -42.3 302 -2.65 3.48 -1.45 3.52

t2 -2.13 2.35 -44.3 327 -3.74 2.74 -3.29 2.5
t3 -0.24 0.139 -7.07 28.2 -0.00431 0.366 -0.19 0.2

sat × sct × λt t1 -4.63 4.36 8.17 142 -8.43 4.87 -5.67 4.52
t2 44.2 15.5 133 704 60.2 16.8 56.6 14.8
t3 0.888 0.42 105 244 0.141 1.15 0.724 0.617

R2 0.6 -10.8 0.597 0.599
Observations

T 3919 3919 3919 3919∑
t Lt 14691 14691 14691 14691

Note: Estimation includes county and firm × contract type fixed effects. Figures are given in

000s of dollars. Holding fixed a general contractor’s (t1) backlog of asphalt projects, every one

standard deviation in λ, as competition decreases, increases the opportunity cost of winning by

around $90, 000.

F.3.2 Single Object Model

Even though bidders place multiple bids each period, the static single-object model

ignores possible cost-synergies between lots, even when it allows costs to be non-linear

in backlogs. One interpretation is that separate groups within the firm bid simulta-

neously, without communication among one another. Therefore bidding groups do

not take into account how payoffs depends not only on their own bid, but also other

bids within the firm.

I estimate the model using JP’s procedure. I complete the first estimation step as

in the text, then skip to the third estimation step and evaluating the continuation

value as in JP, taking an expectation over observed bids instead of using estimated

bid distributions. Because, in practice, multiple auctions occur each period I evaluate

the expected period profit by taking the sum of the expected (additive) profit from
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each auction occurring that period. Finally, I back out j(si) from the inverse bid

function.

F.3.3 Results

Estimates for the static model are off by an order of magnitude, but are extremely

similar to the results for the pseudo-static pay-off presented in figure 5. This is

because we essentially mistake the sum of current costs and discounted future costs

(and opportunity costs) for just current costs. The results for the dynamic single-

object model are more more similar to the dynamic multi-object model. However

this misspecified model generally under estimates the extent of the returns to scale,

generally underestimating the degree of non-additivity across lots.

Figure 11: Model comparison

Model DMO DSO SMO

j(si) θ̂ SE θ̂ SE θ̂ SE

sat t1 123 7.01 39.5 7.77 423 23.6
t2 285 11.3 18.7 12.7 835 36.3
t3 40 1.92 145 7.58 108 5.77

sct t1 107 5.35 49.4 9.86 378 17.3
t2 89.1 11.9 25.9 14.3 153 53.3
t3 15.6 1.91 89.7 6.05 55.2 6.44

(sat )2 t1 -0.337 1.29 0.0669 1.59 -0.116 2.44
t2 -9.26 2.46 -1.68 2.5 -16.2 4.4
t3 -1.34 0.147 -2.08 1.01 -0.229 0.0872

(sct)
2 t1 -7.6 1.13 -1.39 0.889 -14.5 2.12

t2 -14 3.38 -2.48 1.99 -4.93 1.82
t3 -0.479 0.102 -0.671 0.672 -0.328 0.11

sat × sct t1 1.38 1.52 -0.364 2 7.94 2.97
t2 33.4 7.12 -1.6 3.44 58.8 14.4
t3 0.432 0.199 0.801 0.876 0.534 0.34

R2 0.597 0.595 0.581

F.4 Counterfactual Simulations

I now detail how I simulate the sequential auction regime. Time is discrete, and each

period in the simultaneous regime (14 days) is split into 100 sub-periods. Auctions

are distributed randomly across sub-periods.
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To map the estimated AR(1) transition process from 14 day-long periods into 100

sub-periods I assume the sub-period transition process remains AR(1), such that the

mean and variance of the process is the same as the estimated process over the 100

sub-periods, ensuring the long run process is the same. Likewise, estimated payoffs

j(si) are only defined on 14 day long intervals. To evaluate payoffs in the sub-periods

I find a function j̃(si) such that the expected sum of these sub-period payoffs across

100 sub-periods equals j(si). Finally, I use the same estimated competition index as

in the text, capturing the amount of competition for each contract.

For each parameter draw, beginning at an initial set of equilibrium beliefs, I nu-

merically find bidders’ continuation values. I iteratively loop through auctions numer-

ically maximising bidders’ payoffs. I make the simplifying assumption that bidders

only enter the auctions they were actually observed entering, assuming these are the

auctions they have the largest cost advantage in, regardless of the choice of mecha-

nism. In finding the continuation value, to facilitate convergence, I fix bidders’ states

at their observed levels. Just as in estimation I fit a quadratic form to bidders’ max-

imum expected payoffs, and so evaluate the next the continuation value. I continue

this process until the continuation value converges. I also use Newton-Kantorovich

iterations to improve convergence, employing the envelope theorem to evaluate the

derivative of the maximum expected payoffs.

I then simulate the system again, allowing bidders states to vary as they win, and

gradually complete, contracts. I then fit the same Weibull form to minimum rival

bids as used in estimation. While the payoffs of Fringe bidders do not change in the

counterfactual scenario, their beliefs do. I continue this process until achieving con-

vergence. While there may be multiple equilibria, by beginning with the equilibrium

beliefs from the simultaneous regime I try to find a equilibrium close to this regime.

Therefore any equilibrium will be relatively nearby that from simultaneous auctions,

ensuring estimates are conservative.
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