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Abstract

Auctions rarely take place in isolation. Often, many heterogeneous lots are auc-

tioned simultaneously, and auctions are repeated as new lots become available. In this

paper I develop an empirical model of bidding in repeated rounds of simultaneous first-

price auctions. I prove non-parametric identification of primitives in this model, and

introduce a computationally feasible procedure to estimate this type of game. I apply

the model to data from Michigan Department of Transportation highway procurement

auctions and investigate the extent of cost-synergies across auctioned contracts. Fi-

nally, I use counterfactual simulations to compare equilibrium efficiency when contracts

are auctioned sequentially rather than simultaneously.
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1 Introduction

First-price auctions, which are regularly used to allocate government procurement contracts,

rarely take place in isolation. Multiple lots (contracts) are often auctioned simultaneously,

and auctions are repeated whenever new contracts become available. In real world environ-

ments bidders’ values may be non-additive across different lots. For example, bidders may

face capacity constraints, facing higher costs the larger their current backlog. Or, they may

benefit from economies of scale, facing lower costs when working on many of the same type

of contract at once. The structure of these non-additive values is highly relevant for auction

design — should similar contracts be auctioned simultaneously, or spaced out over time? In

this paper I develop an empirical model of forward looking bidding in repeated rounds of si-

multaneous first-price auctions, and study identification and estimation in this framework. I

apply the model to Michigan Department of Transportation (MDOT)’s procurement auction

data and investigate the empirical and policy relevance of these complementarities.

Running simultaneous auctions allows bidders to benefit from a batching effect; giving

bidders information about all the contracts being auctioned that period and allowing them

to focus their bidding on those in which they have a known cost advantage. However, simul-

taneous auctions also exhibit an exposure effect: Because firms cannot place combination

bids they may risk winning too few contracts and be unable to exploit their cost synergies.

Meanwhile, when capacity constraints are the dominant factor, auctioning a large number

of contracts simultaneously may also create inefficiencies by depressing competition.

Previous research has either studied forward looking bidders and assumed auctions are

single-object, or studied auctions of multiple objects and assumed bidders are myopic. For

example, both Jofre-Bonet and Pesendorfer (2003) and Gentry et al. (2023) study synergies

in bidding behaviour in repeated simultaneous first-price auctions for highway maintenance

contracts.1 Jofre-Bonet and Pesendorfer (2003) estimate a dynamic single object model,

assuming that payoffs are additive in lots auctioned simultaneously, and find evidence of

dynamic linkages through negative effects of capacity constraints on bids. Gentry et al. (2023)

study simultaneous first-price auctions, assuming myopic bidding, and find similar capacity

constraint effects across lots auction within a period. However, they also find evidence

1Other examples of papers studying repeated and simultaneous auctions, abstracting away from either
simultaneous bidding or dynamics (often justifiably), include Cantillon and Pesendorfer (2007) on London
bus routes, Flambard and Perrigne (2006) on snow clearing services, Athey et al. (2011) on timber auctions,
Somaini (2020) on highway procurement, Hendricks et al. (2003) on oil drilling rights, and Backus and Lewis
(2016) on online marketplaces, among others.
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of positive synergies among similar contracts that allow firms to exploit economies of scale.

Both papers find evidence for non-additive values in one dimension, either over time or across

lots, but restrict non-additivity in the other dimension. The implication is that neither paper

accurately models the non-additive values. To the best of the author’s knowledge this paper

is the first to unify the dynamic and multi-object approaches to empirical auctions.

I develop a structural empirical model of forward looking bidding in repeated simulta-

neous first-price auctions, where lots are heterogeneous and payoffs are non-additive across

lots. The model is fundamentally the union of the models presented in Jofre-Bonet and Pe-

sendorfer (2003) and Gentry et al. (2023), henceforth referred to as JP and GKS respectively.

Bidder pay-offs are represented as the sum of privately known and potentially correlated lot

specific values, a combination specific flow payoff, and a combination specific continuation

value. Following GKS, the combination specific flow payoff is treated as a deterministic func-

tion of state variables. This is a natural framework that reflects known capacity constraints

or economies of scale. The model primitives consist of the distribution of lot specific values

and the combination specific flow payoff function.2 The central difficulty for both identifica-

tion and estimation is that there is not a one-to-one relationship between bids and values,

because simultaneous first-price auctions (without combination bidding) are not a Direct

Revelation Mechanism. Therefore, unlike Guerre et al. (2000), we cannot invert equilibrium

bidding functions to point identify values. Likewise, unlike JP, we cannot invert equilib-

rium policy functions, and so write the continuation value as a function of the equilibrium

distribution of bids only.

Building on this framework I make three key contributions to the empirical auction liter-

ature. First, I extend GKS’ identification framework to make use of variation in a bidder’s

individual state variables, such as their backlog of contracts, to non-parametrically iden-

tify their combination specific value function without the need for exclusion restrictions.

Intuitively, identification arises because variation in the state causes variation in bidders’

combination values, which in turn causes variation in their bidding behaviour. If lots are

substitutes we expect to observe more aggressive bidding when backlogs are low. Extending

the approach presented in GKS to the dynamic setting I translate the inverse bidding system,

conditional on a given state, into a system of linear equations in the unknown combinatorial

flow payoffs. Key to the identification argument is that we combine these systems of equa-

2Like GKS this allows me to separately identify complementarities and affiliations, the central problem
studied by Kong (2021). Affiliation across lots comes through correlation in the lot specific pay-offs, while
the synergies remain deterministic. Like both papers I assume the lot-specific pay-offs are independent across
players.

2



tions across state variables, essentially stitching together observations of bidding behaviour

from different states. I prove that, under mild conditions, this system has a unique solution.

This result is important because it ensures the combination value is identified without the

need for exclusion restrictions that prohibit identification of forward looking behaviour.3

Second, I propose a three step procedure for estimating the model and establish that

it is
√
T consistent and asymptotically normal. This estimator generalises JP’s procedure:

While the ex-ante value function cannot be expressed using the equilibrium bid distribution

only, it can be written as a function of the bid distribution and a term that corrects for the

complementarities between lots. This correction term is a function of the sum of the com-

binatorial flow payoff and the discounted continuation value. The novelty of the estimation

procedure then concerns how we estimate this correction term. I refer to this term as the

‘pseudo-payoff’: It is the object we estimate if we incorrectly estimated a misspecified static

model. This suggests a simple estimation procedure. First, one estimates bidders’ equilib-

rium beliefs, or the equilibrium distribution of bids. Second, we estimate the pseudo-payoff

— the sum of the flow payoff and the continuation value — by essentially estimating the

multi-object auction model almost as if it were a static model. Third, we evaluate the con-

tinuation value using the estimated correction term, before separating out the combinatorial

flow payoff from the estimated pseudo-payoff. Overall, this is little more computationally

costly than estimating a static multi-object model as in GKS. This estimation procedure

also has broader applicability beyond the auction environment, giving a convenient way to

estimate dynamic games with non-invertible policy functions or conditional choice probabil-

ities.4

Finally, I apply this framework to data from Michigan Department of Transport (MDOT)’s

procurement auctions. In this setting around 35 contracts for highway maintenance and

construction projects are auctioned simultaneously in each round, and rounds are repeated

roughly every fortnight. I focus on contracts that require use of either hot-mix asphalt,

concrete, or both, and consider how firms’ backlogs of asphalt and concrete projects im-

pact their cost functions. These backlog effects create a dynamic linkage that makes payoffs

non-additive across periods, as well as driving complementarities between lots auctioned

3Without additional restrictions, excluded variables (such as the set of lots on offer or backlogs of rival
bidders) enter each bidder’s continuation value, directly affecting their bidding behaviour and violating the
exclusion restriction, rendering the model non-identified in GKS’s framework.

4In settings when policy functions, or conditional choice probabilities, are invertible this procedure is
equivalent to the estimator proposed by Bajari et al. (2007). Differences only arise when invertibility fails.
This occurs in many strategic settings, such as games with non-monotone equilibria, and single-agent settings,
such as when agents choose among lotteries with multiple outcomes.
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simultaneously. For paving firms in particular I find evidence of increasing returns to spe-

cialising in asphalt contracts: Every one standard deviation increase in their asphalt backlog

increases the cost of completing a concrete contract by around 10%, and decreases the cost

of an asphalt contract by roughly the same amount. I use counterfactual simulations to

consider how procurement and construction costs differ when contracts are auctioned se-

quentially instead of simultaneously, eliminating both the batching and exposure effects. I

find that the batching effect dominates, so that construction costs are 9% larger under se-

quential allocation. While competition appears fiercer using sequential auctions, I still find

a net increase in procurement costs of around 1%.

The structure of this paper is as follows: Section 2 introduces the auction game that is

the focus of this paper. Section 3 introduces the identification framework and proves that

model primitives are point identified. Section 4 outlines the proposed three step estima-

tion procedure and establishes large sample properties. Section 5 applies this procedure

to data from MDOT procurement auctions. Several additional results are presented in the

Appendices. Appendices A - C present technical proofs. Appendix D presents extensions to

the identification and estimation framework. Appendix E presents a simulation experiment

evaluating the proposed estimation procedure, and F presents additional analysis related to

the empirical application.

1.1 Related Literature

My key contribution is to unify the literatures on the identification and estimation of both

dynamic auction models and multi-object auction models.5 JP was the first to estimate a

dynamic auction game, analysing sequential highway procurement auctions and find back-

log effects to be determinants of future bidding behaviour. Several papers have built on

this framework, including Jeziorski and Krasnokutskaya (2016) on dynamic auctions with

subcontracting, Groeger (2014) on participation in repeated auctions, Balat (2013) on un-

observed heterogeneity in lot quality, and Raisingh (2021) on pre-announcements. These

papers study settings in which multiple auctions are held simultaneously, and assume pay-

offs are additively separable across auctions within a period. This assumption is unpalatable

5This work is also tangentially related to the literature on empirical Multi-unit auctions, which focuses on
divisible homogenous units (see e.g. Hortaçsu and McAdams (2018)). The estimation procedure presented in
section 4 easily extends to dynamic multi-unit auctions. Another related literature analyses forward looking
behaviour in second-price auctions, including Backus and Lewis (2016) and Bodoh-Creed et al. (2021). In
Appendix D.1 I extend my identification and estimation results to the multi-object second-price setting.
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given they find evidence of non-additivities across auctions held in different periods.

Cantillon and Pesendorfer (2007) were the first to estimate a model of simultaneous auc-

tions. They use combination bids to identify complementarities in simultaneous first-price

auctions, studying procurement auctions for London bus routes. Kim et al. (2014) use this

framework to study the allocation of contracts for Chilean school meals. Fox and Bajari

(2013) study an auction environment without combination bidding, using an equilibrium

stability condition to allow them to identify complementarities. GKS also focus on simulta-

neous first-price auctions without combination bidding. They prove the model is identified

using variation in ‘excluded’ variables: Variables that are excluded from the bidder’s com-

binatorial payoff, such as characteristics of their rivals, and only indirectly affect bidding

behaviour through bidders’ equilibrium beliefs. However, exclusion restrictions fail in a dy-

namic environment. Bidders’ forward looking behaviour ensures every state variable directly

effects their continuation value, and hence bidding behaviour. These exclusion restrictions

are not necessary for identification. Arsenault Morin et al. (2022) extend GKS to allow for

endogenous participation in simultaneous auctions, and study auctions for roof-maintenance

contracts in Montreal.

2 The general model

2.1 Setup

Rules: Suppose that each period t, over an infinite horizon, N risk-neutral players compete

in L first-price Sealed Bid auctions. Player n wins lot l in period t if bntl ≥ max
m 6=n

{bmtl}.
Sealed bids are placed simultaneously, then winners are announced. Winners pay their bids,

and every player observes the bids and identities of winners.

Reservation Prices and Ties: In the main text I assume reservation prices do not bind,

that ties occur with probability zero, and that participation is determined exogenously.

Lots and Lot Characteristics: Each lot is characterised by a vector of characteristics,

which may include the size and location of a particular contract, for example. These char-

acteristics and other common state variables are stacked into the common state s0t ∈ S0. I

assume |S0| is finite.

Outcomes: There are NL different ways that N players can win L lots, and so every

period there are NL possible combination outcomes. Each possible outcome, denoted by

c, corresponds to bidders winning different combinations of the L lots. The set of possible
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combination outcomes is given by the ‘power set’ of the set of available lots, denoted by{
NL
}

, so that c ∈
{
NL
}

.

2.1.1 States and Primitives

Individual States: Player n begins the period in state snt. This may represent a player’s

existing stock of the good, or backlog of contracts. I assume the set of possible individual

states, Sn, is finite.6 If the outcome from round of auctions in period t is c, then player i

ends the period in state scnt, referred to as the ex-post state. scnt = snt if and only if the

player does not win a single lot.

Total States: Stack the individual states {snt}n∈{1,...,N}, and s0t, into the total state

variable st ∈ S, where |S| = S is finite. In section 3.6 I give sufficient conditions on S to

ensure identification. Similarly, Stack the ex-post states for sct ∈ S.

Transition Process: At the beginning of each period, the state st is drawn stochasti-

cally from Ts(.|sct−1). Because |S| is finite, the transition probabilities can be described by

transition matrix T , such that P (st = si|sct−1 = sj) = Tij.

Actions: Each player plays an L dimensional vector of bids each period, denoted bnt.

The set of possible bids is convex and compact, so that bntl ∈ [b, b̄].

Lot Specific Payoff: I focus on an independent private value framework. If n wins lot

l at t they receive a privately observed lot specific payoff, υntl. Stacking these values υnt, a

L× 1 vector, is drawn from cumulative density function Fn(.|st) with support [υn, ῡn].

Deterministic Payoff: If a bidder ends a period in state scnt, they receive a deterministic

flow payoff πn(scnt), where πn : Sn → R. Whereas υ is stochastic, I assume πn is a determinis-

tic function of sn and is finite. Because the state space is finite, there are |Sn| possible values

of πn(scnt), which I denote by πn, stacking π across states. These payoffs can be interpreted

as how a bidder’s payoffs depend deterministically on their state. For example, if firms face

higher costs when their backlogs of contracts are larger or when they are work on many

contracts simultaneously. Dynamic linkages and static complementarities are expected to be

expressed through this payoff term. For example, if π() exhibits increasing returns to scale.

Combination Payoffs: Because there are 2L possible combinations of lots that player n

might win, there are 2L possible ex-post deterministic payoffs πn(scnt), corresponding to each

of the possible ex-post states. Define the 2L vector Πn(st) such that each element of this

6This is predominantly for mathematical convenience, but is likely to hold in practice. Highway mainte-
nance companies likely have a maximum number of contracts they can feasibly hold at any given time, and
their backlog of contracts can be arbitrarily discretised into days of work remaining.
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vector corresponds to the deterministic flow payoff from winning a different combination of

lots. This object varies with st since st determines the characteristics of the available lots,

and hence the possible ex-post states. We can define a linear mapping between Π and π

such that: Πn(s) = Bsπn, where the known 2L×|Sn| dimensional selection matrix Bs selects

elements of πn according to the possible ex-post states for player n, given the period started

in state s.

2.1.2 The Bidder’s Problem

Strategies: A (pure) Markovian strategy σn consists of a mapping from a player’s type

(υn,Πn) and the state of the world s onto a series of bids bnt. Ex-ante a player’s strategy

admits a distribution of bids according to Fn, Πn, and s.

Marginal Win Probabilities: DenoteGml(.;σm) and gml(.;σm) respectively the marginal

cdf and pdf of bidder m’s bid on lot l according to their strategy σm. Denote Γn(b;σ−n) the

L× 1 vector where row l contains the probability that n wins lot l, given their bid and the

strategies of other players. Because ties occur with zero probability we can write:

Γnl(bnlt;σ−n) =
∏
n′ 6=n

Gn′l(bnlt;σn′)

Combination Win Probabilities: Denote Pn(b;σ−n) the 2L×1 vector of probabilities

of possible combination wins, conditional on n’s bids and σ−n. Each row of this vector

corresponds to the probability of n winning a different one of the 2L possible combinations

of lots. So, row c of this vector contains the probability that n’s ex-post state will be scnt.

Overall Combination Probabilities: There are NL different ways N players can win

L lots, so NL different possible combination outcomes. Therefore, denote Qn(b;σ−n) the

NL × 1 vector of probabilities of possible outcomes from the round of auctions, conditional

on n’s bid and σ−n. Row c of this vector then contains the conditional probability that the

outcome from period t is c, and so the overall ex-post state is sct . This object is extremely

similar to the combination win probabilities P presented previously, except Q also accounts

for exactly which player wins each lot.

Discounting: Players have temporally additively separable preferences, and discount

future payoffs using known discount factor β ∈ (0, 1).

Expected Flow Pay-off: I assume that bidders are risk neutral and payoffs are quasi-

linear in payments. Consider player n with a realisation of υ = υnt who places bid b against
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players bidding according to strategies σ−n:

W̄ (b|υnt, s;σ−n) = Γn(b;σ−n)T (υnt − b) + Pn(b;σ−n)TΠn(s)

Value Function: The Bellman equation is given by: Wn(υnt, st;σ−n) =

max
b

 W̄ (b|υnt, st;σ−n) + β
∑

c∈{NL}

Qnc(b;σ−n)

∫
s̄

∫
υnt

Wn(υn, s̄;σ−n)dF (υn|s̄)Ts(s̄|sct)ds̄


(1)

Continuation Value: It is useful to define the continuation value: Vnc(st;σ−n) =∫
s̄

∫
υn
Wn(υn, s̄;σ−n)dF (υn|s̄)Ts(s̄|sct)ds̄. The combination continuation value is given by

Vn(st;σ−n), a NL × 1 vector. Each element c of this vector contains the continuation value

corresponding to a different allocation, ending the period in a different state sct . Since bidders’

continuation values depend on exactly which combination of lots they win, this is another

area in which static complementarities across lots will be expressed.

2.2 Equilibrium

I now discuss equilibrium, and the assumptions required for existence of an equilibrium. A

full and general proof of equilibrium existence is beyond the scope of this paper.7 Instead, I

present a proof of existence under the conjecture that equilibrium exists in the static game.

I focus on symmetric Markov Perfect Equilibria (MPE):

Definition 2.1. : A symmetric MPE consists of a set of strategies σ∗ and beliefs (Γ, P,Q),

such that for all n, and any (υ, π, s): (Optimality) σ∗n is a best response to σ∗−n, (Consistency)

Beliefs Γn, Pn, and Qn are consistent with σ∗−n, (Markovian) σ∗n depends on the state st, not

on t itself, (Symmetry) σ∗n = σ∗m for all m 6= n, so that σ∗n depends on their type, (υn,Πn),

not their identity.

7To my knowledge, no complete proof of equilibrium existence exists even for the static game. This paper
joins the papers studying sufficiently complex auction games in which neither existence, nor uniqueness of
equilibrium can be guaranteed. For example, GKS on simultaneous first-price auctions, Fox and Bajari
(2013) on simultaneous ascending auctions, or JP on dynamic single-object first-price auctions. If the bid
space were discrete, then static equilibrium existence follows from Milgrom and Weber (1985).
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2.2.1 Equilibrium Existence

To prove equilibrium existence in the dynamic game, I rely on the following assumption

about equilibrium existence in a static game:

Assumption 1. There exists a symmetric (non co-operative) Pure Strategy Bayesian Nash

Equilibrium of the (myopic) stage game, such that for all n and l the expected pay-off is

continuous in υn and Πn.

This conjecture takes essentially the same form as the assumption that a continuous and

unique equilibrium exists in Gentry et al. (2023).

Proposition 1. Under the assumptions of the game, and under Conjecture 1, a Symmetric

Markov Perfect Equilibrium exists.

Proof is relegated to Appendix C, as existence is not the main focus of this paper. The

proof consists of showing that the equilibrium pay-off in the stage game is consistent with

the continuation value, employing Kakutani’s fixed point theorem.

3 Identification

I now demonstrate that the distribution of lot specific payoffs F , and the flow payoff function

π are non-parametrically point identified.8 The intuition is that variation in s causes variation

in payoffs which, in turn, cause variation in bidding behaviour. For example, if lots are

complements then the more a bidder has won in the recent past, the more aggressively we

expect them to bid in the present. I then use the observed bidding behaviour, as well as

information about bidders’ equilibrium beliefs, to essentially ‘back out’ the distribution of

values and the complementarities. My results ensure identification of Fn and πn separately

for each bidder, however I drop the n subscripts except where necessary.

I introduce the assumptions necessary for identification in subsection 3.1. In 3.2 - 3.3

I use the bidder’s optimisation problem to derive the Inverse Bid System. In 3.4 - 3.5 I

combine this system across states to form a system of linear equations in Π. In 3.6 I present

8A model is point identified if, given the implications of equilibrium behaviour, the distribution of bidder’s
pay-offs, {Fn, πn}n∈{1,...,N}, are uniquely determined by the distribution of observables (Athey and Haile,

2002). A model is non-parametrically identified if the identified objects are functions (Lewbel, 2019), in the
sense that we do not assume a functional form, but identify πn(sn) for every sn ∈ Sn and Fn(υ|sn) for every
pair (υ, s).
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sufficient conditions for this system to have a unique solution. In subsection 3.7 I consider

identification under several extensions of the model.

3.1 Assumptions necessary for identification

Assumption 2. For each t, the econometrician has a set of observations Ot consisting of

the initial state st, the bids of all bidders {bnt}n∈{1,...,N}, and the outcomes from the round

of auctions.

Assumption 3. The data {Ot}t=1...T are generated by strategy profile σ∗ which is a symmet-

ric Markov perfect equilibrium of the dynamic auction game. Furthermore, the same MPE

is played in each period.

Define G(.|s),Γ(.|s), P (.|s), and Q(.|s) as the empirical counterparts to the objects pre-

sented previously. Under these assumptions G,Γ, P,Q, and T are all identified, and for the

remainder of this section I treat these objects as known.

Assumption 3 also ensures the continuation value can be written as a function of the

state. We can then express the continuation value in vector form as V, with elements

corresponding to the expectation from ending a period in any particular ex-post state. I can

then define the relationship between the NL vector V (s) defined previously and V, so that

V (s) = AsV using the known NL × S selection matrix As. This contains a 1 in entry cm

if the potential outcome c yields ex-post state sc = sm, selecting the relevant continuation

values corresponding to the possible ex-post states. This is similar to how we previously

defined the relationship Π(s) = Bsπ.

We can define the relationship P (b|s)TBs = Q(b|s)TAsC for the S×Sn matrix C. Entry

ij of C is equal to 1 if sin = sjn, and zero otherwise.9

Assumption 4. For all s, n, and l Gn(bn|s;σ∗) is absolutely continuous in bnl.

This assumption ensures that the marginal, combination, and over-all combination win

probabilities are continuous and differentiable in b, enabling us to take first order conditions.

As shown in GKS, when this assumption does not hold we lose point-identification, though

the model primitives generally remain partially identified.

9P (b|s)TBs is a linear map Sn → [0, 1] that gives the probability bidder n ends the period in a given
state sn, given the period began in total state s. Meanwhile, Q(b|s)TAs is a linear map S → [0, 1] that
gives the probability of ending the period in any of the total states, given the period began in s. C is then
a transformation Sn → S that, for a given individual state sn ∈ Sn, sums over all the total states s ∈ S for
which bidder n’s state is also sn.
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Assumption 5. E[υ|s] = 0 and π(s1
n) = 0.

υ is mean independent of s, as we cannot separately identify E[υ|s] from Π(s). This is

similar to the assumption E[υ|s] = E[υ], except we ‘absorb’ the mean of υ into Π through a

linear term. Finally, we must normalise π(sn1) because only marginal payoffs are identified.

Based on these assumptions, I will prove the following proposition:

Proposition 2. Under assumptions 2 - 5, the model primitives F and π are non-parametrically

point identified.

This result differs from GKS’ identification result even when bidders are myopic (β = 0),

differing in the source of identifying variation. They prove identification using excluded

variables which cause ‘exogenous’ variation in Γ and P . I use included variation in the

state which directly enters π(sn) + βV (s), and so shifts bidding behaviour directly. I show

that, under a restriction on the ordering of the state space, variation in bidding behaviour

that arises from variation in the state space uniquely determines π. In this respect, the

identification argument is closer in spirit to the argument presented in Pesendorfer and

Schmidt-Dengler (2008).

3.2 First Order Conditions

The agent’s problem is to maximise their expected discounted pay-off, and so in each period

the agent maximises the following object, with respect to b:

W̃ (b|υ; s) =Γ(b|s)T (υ − b) + P (b|s)TΠ(s) + βQ(b|s)TV (s)

=Γ(b|s)T (υ − b) + P (b|s)TBsπ + βQ(b|s)TAsV (2)

Assumption 4 ensures that P (b|s), Q(b|s), and Γ(b|s) are continuously differentiable in b.

Necessary First Order Conditions of optimal bidding are then given as:

∇bΓ(b∗|s)︸ ︷︷ ︸
L×L

(υ − b∗)︸ ︷︷ ︸
L×1

= Γ(b∗|s)︸ ︷︷ ︸
L×1

−∇bP (b∗|s)︸ ︷︷ ︸
L×2L

Bsπ︸︷︷︸
2L×1

−β∇bQ(b∗|s)︸ ︷︷ ︸
L×nL

AsV︸︷︷︸
nL×1

(3)

Under the assumption of zero probability ties Γnl(b|s) =
∏

n′ 6=nGn′l(bnl|s). Therefore ∇Γ

must be a diagonal matrix with entry ll equal to
∑

n′ 6=n gn′l(bnl|s)
∏

k 6=n′,nGkl(bnl|s), and so
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∇Γ must be invertible for most b.10

3.3 The Inverse Bidding System and Identification of F

F is identified, conditional on π and βV , by inverting the first order conditions to obtain

υ as a function of bids, π, and βV . This inversion comes from GKS and is a simple multi-

object extension of Guerre et al. (2000) identification result from inverting the first order

conditions. Invert the first order conditions for the inverse bid system:

ξ(b∗|π, βV ; s) = b∗︸︷︷︸
observed

+∇bΓ(b∗|s)−1[Γ(b∗|s)︸ ︷︷ ︸
Identified

−∇bP (b∗|s)︸ ︷︷ ︸
Identified

Bsπ −∇bQ(b∗|s)︸ ︷︷ ︸
Identified

AsβV] (4)

This system extends the the standard inverse bid function. At the optimum the lot specific

value is equal to bids b∗ plus a lot specific markup ∇bΓ(b∗|s)−1Γ(b∗|s), minus a combination

markup ∇bΓ(b∗|s)−1∇bP (b∗|s)Bsπ, minus a dynamic markup which depends on precisely

who won each combination of lots ∇bΓ(b∗|s)−1∇bQ(b∗|s)AsβV.

We can evaluate this inverse bid function at the observed bids, which holds for a particular

candidate (π, βV ). If this candidate (π, βV ) is correct, then ξ(b∗|π, βV ; s) = υ. From here

it is simple to non-parametrically identify F , as in GKS.

3.4 Identification of V

We can write V as a function of the distribution of bids and π only:

Proposition 3. Under assumptions 2 - 5, the expected stage pay-off is given by:

W̃ (b∗|υ; s) =Γ(b∗|s)T∇bΓ(b∗|s)−1Γ(b∗|s)

+ [P (b∗|s)T − Γ(b∗|s)T∇bΓ(b∗|s)−1∇bP (b∗|s)]Bsπ

+ [Q(b∗|s)T − Γ(b∗|s)T∇bΓ(b∗|s)−1∇bQ(b∗|s)]AsβV (5)

Proof of this proposition is given in Appendix A, generalising Proposition 1 in JP. The

first term on the right hand side can be written as
∑

l

∏
n′ 6=nGn′l(bnl)∑
n′ 6=n gn′l(bnl)

— the first term in JP’s

proposition. Unlike in the single object case there is a correction for the non-additivity.

10In practice, ∇Γ may not be invertible if, for example, some lots are unavailable. In this case, the
corresponding diagonal entry is zero. Instead, it is without loss to use a pseudo-inverse that consists of
zeroing out the values of ∇Γ−1 that correspond to the zero values of ∇Γ.
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From Proposition 3, employing the identity P (b|s)TBs = Q(b|s)TAsC, and taking an

expectation of the observed bids, we can write the ex-ante value function as:

V e(s) = Φ(s) + Ω(s)[Cπ+βV]

Where Φ(s) = Eb[Γ(b∗|s)T∇bΓ(b∗|s)−1Γ(b∗|s)|s]

Ω(s) = Eb[Q(b∗|s)T − Γ(b∗|s)T∇bΓ(b∗|s)−1∇bQ(b∗|s)|s]As

Stacking over s write the continuation value as V = TVe = TΦ + TΩ[Cπ + βV], which we

invert for: V = (IS − βTΩ)−1[TΦ + TΩCπ].11 This ensures that, conditional on π being

known, the continuation value is point identified.

3.5 Identification of π

Impose the mean zero property of υ, then substitute in the expression for the Inverse Bid

System given in Equation 4, for:

0 =Eυ[υ|s] = Eb∗ [ξ(b∗; s, (π,V))|s]

=Eb∗ [b
∗ +∇bΓ(b∗|s)−1Γ(b∗|s)|s]− Eb∗ [∇bΓ(b∗|s)−1∇bQ(b∗|s)|s]As[Cπ + βV]

=Υ(s)−Ψ(s)[Cπ + βV] (6)

Stacking over s, then substituting in the expression for V and simplifying, we get:

0 =Υ−Ψ[Cπ + βV]

=Υ− βΨ(IS − βTΩ)−1TΦ−Ψ(IS − βTΩ)−1Cπ (7)

This system of LS equations in Sn − 1 unknowns overcomes the standard order condition

discussed in GKS. There exists a unique solution to this system (π is point identified) if and

only if the LS × Sn matrix Ψ(IS − βTΩ)−1C has rank Sn − 1.

3.6 Rank of Ψ(IS − βTΩ)−1C

This rank condition requires that observations of bidding behaviour, across all S states,

produces sufficient information about π to uniquely pin down all Sn − 1 elements. We

11Invertibility of (IS − βTΩ) is standard and follows from strict diagonal dominance (Pesendorfer and
Schmidt-Dengler, 2008).
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gain information about π(sn) from how bidding behaviour changes when sn is a possible

outcome from the round of auctions. By stacking the moment conditions in equation 7 we

stitch together the information about π across different state observations. In addition to

information as sn varies, we also use information as s−n varies, even when this is excluded

from the function π, resulting in additional identifying variation. This rank condition is

essentially the same rank condition assumed for identification in most studies of dynamic

games, discussed (though not proven) in Pesendorfer and Schmidt-Dengler (2008).

One additional assumption is sufficient for this rank condition to hold. Define the set

valued function Scn(sn, s0) as the set of possible individual ex-post states scn having started

in state sn, given the common state s0:

Assumption 6. i) The set Sn is partially ordered according to the strict partial ordering

�, such that if s′n ∈ Scn(sn, s0) then s′n � sn.

ii) The maximal elements of Sn do not outnumber the non-maximal elements.

iii) For any non-maximal s′n, sn and all s0, for any two corresponding elements of the set

of possible ex-post states Scn(s′n, s0) and Scn(sn, s0) denoted sc′n and scn respectively: If s′n � sn

then sc′n � scn, and if s′n 6� sn then sc′n 6� scn.

The partial ordering assumption only imposes the transitivity of partially ordered sets.

This requires that winning an auction is monotonic: one cannot gain an object from winning

one auction and give it away by winning a different auction. I limit the number of maximal

elements because observations of bidding from maximal elements are not informative.12 Part

iii) requires that if s′n is higher in the partial ordering than sn, then each outcome in the set

of possible ex-post states Scn(s′n, s0) is higher than the corresponding element in Scn(sn, s0).

For example, if s′n � sn then the element of Scn(s′n, s0) that corresponds to winning every

available lot must also be higher than the element of Scn(sn, s0) that corresponds to winning

every available lot. This only requires that if a bidder begins a period with a larger state,

winning the same set of lots means they also end the period with a larger state.

Proposition 4. Under assumption 2 - 6 Ψ(IS − βTΩ)−1C has rank Sn − 1

Proof of this proposition is given in Appendix B. The rank condition is not trivial, since Ψ

is certainly rank deficient. Likewise, it is not ex-ante obvious whether stacking Ψ(s) across

12An element sn is defined as maximal if there does not exist an s′n ∈ Sn such that s′n � sn. One
interpretation is that these maximal elements are the largest (under �) states that are observed as possible
ex-post outcomes, but never as ex-ante outcomes. In this way, we want to try to identify π for these states,
but do not get to use observations beginning in these states.
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initial states provides information about π(scn) for every possible ex-post state scn. The

bulk of the proof establishes the rank of Ψ and finds its null space. As we stitch together

observations of bidding from each state, stacking Ψ(s) across s, the rank increases by at least

two each time. I then consider the image of (IS − βTΩ)−1C, proving that the only element

in the intersection of this image and Ψ’s null space is the constant vector.13

3.7 Extensions

Second-price auctions: In Appendix D.1 I show how this framework extends almost

trivially to simultaneous second-price auctions.

Binding reservation prices: In Appendix D.2 I consider how the presence of binding

reservation prices impact identification. Essentially, they cause censoring in the data so that

we immediately lose point identification of both F and π. However, F remains partially

identified, using a similar argument as presented in subsection 3.3. We can no longer use

moment conditions to identify π, as in subsection 3.5, and instead use quantile conditions.

Endogenous Entry: In Appendix D.3 I consider an additional stage in-which the bidder

chooses a subset of auctions to enter, where entering each subset has an associated cost. This

creates a minor change to the representation of V as a function of π. The identification of

π and F follows from previous arguments. Identification of the entry cost distribution then

follows from standard results.

Stochastic Combination Value: In Appendix D.4 I allow the combination value to be

a function of low dimensional (< L) random variables, such as unobserved states. The neces-

sary restriction is that this function is strictly monotonic in the unobservables. Identification

arises from proving that bids can be inverted to point identify the unobservables.

4 Estimation Procedure

Having established non-parametric identification, I now describe a computationally feasible

procedure to estimate F and π. Because we cannot write maximised expected payoffs as a

function of bids only (Proposition 3), JP’s estimation method for dynamic auction models

is inapplicable. I begin with a general description, outlining the key intuition. I then detail

the three estimation steps and discuss asymptotics.

13This proof only holds for the setting when the state space is finite. However the underlying argument
extends to the case with infinite states: Even though the rank of an infinitely large matrix is undefined, it
is clear how the logic of combining observations across states yields identification.
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4.1 The Premise

The central premise of the procedure exploits that, under the assumption that payoffs are

additively separable over time, we can write the continuation value as a function of: (1)

Primitives of the transition process, (2) the observed distribution of equilibrium actions, and

(3) the sum of the flow pay-off function and the discounted continuation value. I refer to this

sum as the pseudo-payoff; it is object we mistake for the payoff function if we incorrectly

assume myopic bidding. This relationship is given by:

V (s′) =

∫
s

∫
b

Φ(b|s) + Ω(b|s) κ̄(s) dG(b|s)Ts(s|s′)ds

Where: [κ̄(s)]c = κ(sc) = π(scn) + βV (sc)

and Φ(b|s) =Γ(b|s)T∇bΓ(b|s)−1Γ(b|s)

Ω(b|s) =Q(b|s)T − Γ(b|s)T∇bΓ(b|s)−1∇bQ(b|s) (8)

This equation restates Proposition 3 as a function of G and T , as well as the pseudo-payoff

function κ. Both G and T can be estimated using standard methods. Therefore, if we

had a consistent estimate for the function κ : S → R, then we would have a consistent

estimate for V , and then π (= κ − βV ). Like the distribution of equilibrium bids, κ is not

a model primitive but an equilibrium object. The central estimation problem then concerns

estimating this pseudo-payoff function κ.

Estimating κ is very similar to estimating a misspecified static model. If players are

myopic (β = 0) then κ = π. However, κ generally depends on s−n, while π does not.

The procedure involves estimating a generalised static model, allowing payoffs to depend on

elements of the state that enter the continuation value.14

The procedure is a generalisation of the estimation procedure proposed by JP. When

payoffs are additively separable V (s′) =
∫
s

∫
b

Φ(b|s)dG(b|s)Ts(s|s′)ds and the procedure

collapses down to JP. We write the Value Fuction as a function of the distribution bids and

this additional term Ω(b|s)κ̄(s), correcting for the non-additivity across lots. Unlike JP we

require an extra estimation step to estimate this correction term. In a single-agent setting this

procedure is equivalent to the Conditional Choice Probability estimator of Hotz and Miller

(1993), and in other settings when the policy function is invertible it is equivalent to the

procedure of Bajari et al. (2007). This equivalence arises because the pseudo-payoff function

14This permits a test of forward looking behaviour. If the model is correctly specified and (s−n, s0) is
excluded from π, then observing that κ varies with (s−n, s0) is sufficient to reject myopia.
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essentially is the inverted policy function. The procedure only differs when policy functions,

or conditional choice probabilities, are not invertible. In the single-agent environment this

occurs in repeated ‘choice over lotteries’ settings; when multiple (non-ordered) types may

choose the same action. This also occurs in repeated games when the stage game has

non-monotone equilibria, which is the case for multi-object auctions without combination

bidding.15

4.2 The Procedure

The procedure can be written succinctly as:

Definition 4.1. Algorithm 1.

1. Estimate equilibrium bid distributions G (beliefs) and the transition process Ts.

2. Given Ĝ, estimate κ using the identifying conditions E[ξ(bit; st, κ, Ĝ)|st] = 0 for each

state observed in the data. Then, evaluate F̂ using Ĝ and a change of variables.

3. Given Ĝ, T̂ , κ̂, evaluate V̂ using Equation 8. Finally, evaluate π̂ = κ̂− βV̂ .

I make the following assumption about the true underlying structure, enabling me to

discuss the statistical properties of this estimator:

Assumption 7. i) Beliefs G, the transition process Ts and the pseudo-payoff function κ are

parameterised by finite parameter vectors θG,θτ , and θκ respectively.

ii) G(b|s;θG), Ts(s|s′;θτ ), and κ(s;θκ) are continuously differentiable in θG,θτ , and θk

respectively. Also, the spaces of parameters ΘG, Θτ , and Θκ are compact.

This assumption ensures the consistency, asymptotic normality and
√
T convergence of the

estimator.16 With a discrete state space only parameterisation of G is needed, as both κ(s)

and Ts can be estimated state-by-state. However, in many settings (including the application

in this paper) researchers may choose to treat a particularly large state space as continuous.

While this assumption rules out fully non-parametric methods, such as kernels or sieves,

15I leave discussion of the broader applicability of this estimator for future work. The identification
requirements for this procedure are slightly stronger than in Bajari et al. (2007), who only require that the
policy function is identified. Here, we also require that the pseudo-payoff function is identified, which is not
trivial. In the simultaneous first-price setting, this is guaranteed by the rank condition on Ψ discussed in
section 3.

16A similar assumption is required by Bajari et al. (2007), and is used in practice in most studies.
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it permits flexible parametric and semi-nonparametric methods such as polynomials and

sieve-type B-spline estimators with pre-specified knot vectors.17 Part ii) of the assumption

ensures the standard regularity conditions hold for asymptotics of Generalised Method of

Moments (GMM) estimators. The standard identification, invertibility, and finite moment

assumptions are implied by the assumptions and arguments presented in Section 3. To apply

this estimator in other settings requires an additional identification assumption. Proposition

5 summarises the properties of this estimator:

Proposition 5. Under assumptions 2 - 7 F̂ and π̂ are
√
T consistent and asymptotically

normal.

I now detail each of the three estimation steps, before demonstrating that their asymptotic

properties follow from Mises (1947) and Newey and McFadden (1994).18

4.2.1 Step 1.

The First Step constitutes the standard first step in the empirical auction literature. There

are several possible approaches the researcher might take. As in GKS and JP One might

estimate the conditional joint distribution of bids Gi, then form Γ(b), P (b), and Q(b) respec-

tively. Otherwise the researcher may directly estimate these objects, essentially estimating

the joint distribution of maximum rival bids as in Cantillon and Pesendorfer (2007).

Given Assumption 7 we cannot take a fully non-parametric approach as this complicates

asymptotics. Instead, suppose we estimate θG using the estimating equation E[m1(bt, s;θG)] =

0. m1(bt, s;θG) might be the score vector in a fully parametric specification, or m1(bt, s;θG) =

G(b|s;θG)−
∏

l I[blt ≤ bl] for all b ∈ B for a moment based approach. Asymptotic properties

of this GMM estimator are discussed shortly.

The parameters of the transition process θT must be estimated similarly. The central

requirement, given Assumtpion 7, is that the estimator is chosen to be
√
T consistent and

17B-splines are an attractive alternative to fully non-parametric methods, allowing researchers to estimate
flexible models while setting the knot vector to ensure sufficient data in each cell. The Stone Weierstrass
Theorem ensures B-splines approximate any continuous function to arbitrary precision given sufficient knots.
These methods are increasingly being used in the empirical auction literature (see Hickman et al. (2017) and
Bodoh-Creed et al. (2021) as examples).

18Both π̂ and F̂ are centred by their pseudo-true value, under the finite dimensional parameterisation of
Assumption 7. That is, the model is likely misspecified and so there remains the possibility of asymptotic
bias. This bias can always be diminished as the sample size increases by increasing the flexibility of the
functional form, such as using splines with a finer grid of knots.
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asymptotically normal, with analytically tractable asymptotic variance. This includes stan-

dard estimators such as maximum likelihood and GMM, really only ruling out certain non-

parametric estimators. As I will discuss shortly, the choice of parameterisation depends on

the parameterisation of κ(s;θκ), as certain flexible functional form assumptions can make

estimation extremely convenient.

4.2.2 Step 2.

In the second step we estimate the pseudo-payoff function κ(s;θκ), estimating the (poten-

tially large) parameter vector θk. This broadly follows the second stage in the estimation

procedure presented in GKS, estimating the model as if it were static using the identifying

conditions from Section 3: E[υ|s] = 0.

In practice we employ GMM using the moment condition E[m2(b, s;θκ,θG)] = 0, where

m2(b, s;θκ,θG) = H(s)ξ(b, s;θκ,θG) with H(s) as an h × L dimensional matrix of instru-

ments that are some known function of s, and so mean independent of υ. θ̂
κ

minimises the

standard quadratic loss function:

θ̂
κ

= arg min
θk


(

1

T

T∑
t

m2(bt, st;θ
κ, θ̂

G
)

)T

Ŵ

(
1

T

T∑
t

m2(bt, st;θ
κ, θ̂

G
)

)
Where Ŵ−1 = 1

T

∑
tH(st)ξ(bt, st;θ

κ, θ̂
G

)ξ(bt, st;θ
κ, θ̂

G
)TH(st)

T is the multi-step asymp-

totically efficient weight matrix, allowing for within period correlation. Importantly, the es-

timate θ̂
κ

depends on θ̂
G

, and so inference must take into account this multi-step estimation

procedure, which I discuss in detail in Section 4.3.

In practice it is particularly convenient if the researcher fits a flexible linear in parameters

parametric form to κ(s;θκ) = h(s)Tθκ, where h(s) is, for example, a vector of B-splines.

We then use this vector for our instruments, so that Hl(s) = h(s) for each l. This form

is convenient first because of how it can simplify the third estimation step, which I discuss

shortly, and second because of how it allows us to interpret this GMM step as a linear

instrumental variable problem, as I now discuss.

Rewrite the Inverse Bid System as a regression equation:

blt +
Γl(blt|st)
∇blΓl(blt|st)︸ ︷︷ ︸

yt

= −[
∇bQ(bt|st)
∇blΓl(blt|st)

]l. κ̄(st;θ
κ)︸ ︷︷ ︸

H̄(st)θ
κ

+υlt
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Where row c of the known NL × |θκ| matrix H̄(st) is h(sc)T . Now, we could estimate

θκ using least squares; minimising the sum of squared residuals
∑

t υt
Tυt. In general

E[υlt[
∇bQ(bt|st)
∇blΓl(blt|st)

]l.] 6= 0 because E[υltbl′t] 6= 0, an endogeneity problem. Instead, we use

our instruments h(s), which are mean independent of υl. The first stage is then:

−[
∇bQ(bt|st)
∇blΓl(blt|st)

]l.H̄(st) = δlh(st) + εlt

Existence of this first stage follows from the previous identification results. However, the

instruments may be weak if h(st) does not ‘cause’ sufficient variation in ∇bQ(bt|st)
∇blΓl(blt|st)

]l.H̄(st).

This occurs when the observed variation in initial states st is less than the variation in the

possible ex-post states sct . It is then pertinent to consider additional instruments. Fortu-

nately, many standard packages are available for analysing the relevance and validity of our

instruments in this linear instrumental variable setting.

Next, back out the distribution of lot specific values F using a change of variables:

F̂ (υ|s) = G(b∗(υ|s; θ̂
G
, θ̂

κ
)|s; θ̂

G
)

Where b∗(.|s; θ̂
G
, θ̂

κ
) gives the estimated bid function, which can be evaluated for a given υ

using numerical methods. The estimated bidding function depends directly on the estimates

for beliefs and the pseudo-static payoff function, as well as indirectly on s. Meanwhile, to

draw υs from the estimated distribution, in order to perform counterfactual simulations, one

convenient method is to draw ξl(bt|st; θ̂
κ
, θ̂

G
) from their empirical distribution. This has

the benefit that one does not have to explicitly evaluate F̂ (υ|s).

4.2.3 Step 3.

Given the estimated distribution of bids, transition process, and pseudo-payoffs, evaluate the

ex-ante value function, then the continuation value, using equation 8. That is, given a period

ends in state s, estimate expected payoffs in the following period. Assumption 7 ensures the

ex-ante value function can also be written as V e(s;θV ), where θV is a finite parameter vector

and the function V e is known up to θV .19 We could use numerically integration to evaluate

the ex-ante value function, but it is often convenient to take a finite sample approximation

over observed bids and states using non-linear least squares:

19At worst this known function is given by equation 8, with θV = (θG,θk). Often, as in Section 5, it will
be convenient to fit a flexible parametric form to V e(s;θV ).
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θ̂
V

= arg min
θV

{
1

T

T∑
t

[V e(st;θ
V )− W̄ (bt, st; θ̂

G
, θ̂

κ
)]2

}
W̄ (b, s;θG,θκ) is the parameterised object defined in Equation 8. This is equivalent to

using a third GMM step, employing the moment condition E[m3(b, s;θV , θ̂
κ
, θ̂

G
)] = 0,

where m3(bt, st;θ
V , θ̂

κ
, θ̂

G
) = ∇θV V e(st;θ

V )[V e(st;θ
V )− Π(bt, st; θ̂

G
, θ̂

κ
)].20

Finally, we back out our estimate π̂(sn) for each sn using:21

π̂(sn) = κ(s; θ̂
κ
)− β

∫
V e(s′; θ̂

V
)Ts(s

′|s; θ̂
τ
)ds′

When states are discrete the integral can be evaluated analytically, otherwise (depending

on the specification of Ts) the analytic expectation may still be feasible. If not, numerical

methods can be used. If the researcher fits a linear in parameters form to κ, such as κ(s;θκ) =

h(s)Tθκ, then it is convenient to assume the same functional form for both V e and Ts:

V e(s;θV ) = h(s)TθV and E[h(st+1)T |st] = h(st)
Tθτ . π then inherits this linear in parameters

form: π(s) = h(s)T (θκ − βθτθV ), simplifying both estimation and inference.22

4.3 Large Sample Properties

I now discuss the large sample properties of the estimator, proving proposition 5. I assume

a
√
T consistent and asymptotically normal estimator is used for θ̂

τ
. Next, θ̂

G
, θ̂

κ
, and

θ̂
V

result from a three step GMM procedure, and so Assumption 7 ensures we can apply

Theorem 6.1 from Newey and McFadden (1994). Therefore θ̂
G

, θ̂
κ
, and θ̂

V
are
√
T consistent

and asymptotically jointly normal.

Finally, both F and π are known functions of these estimated parameters, and so their

asymptotic properties follow from the delta method (Mises, 1947).23 The asymptotic vari-

20There are also large efficiency gains from weighting observations according to the estimated variance of

θ̂
κ

and θ̂
G

. Weight observations t using the inverse of the estimated variance of W̄ (b, s;θG,θκ). Weighting
can also be employed in the second estimation step, however in practice θG will be more precisely estimated
than θκ.

21We average π̂s over (s−n, s0). With a correctly specified model and infinite data there will be no
variation. In the spirit of Magnac and Thesmar (2002) β is identified from our exclusion restrictions on π.
We could set β such that π̂ is independent of s−n. This is left for future work.

22Other approaches are also possible, such as plugging the estimated continuation value into the inverse
bid system and performing a final GMM step, treating π̂ as the only unknown. This is similar to the classic
quasi-maximum likelihood approach to CCP estimation.

23This requires both functions are continuously differentiable in the estimated parameters. For π̂ this
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ances of κ̂, F̂ , and π̂ are then as standard, and so finite sample approximations for these

variances can be used for inference and hypothesis testing.

In Appendix E I present the results of a simulation study examining the performance of

both semi-parametric and semi-nonparametric estimators. There are two key findings from

this exercise: First, the choice of instruments in the second stage is extremely important. The

initial state instruments are often weak and the resulting estimator converges slowly, partic-

ularly when the model is incorrectly specified. Surprisingly, while using additional relevant

instruments is best, using no instruments performs well, exhibiting very little bias and with

low variance in small samples. Second, the semi-nonparametric B-spline estimator performs

very well. However computation is slow, particularly when calculating multi-step variances.

Meanwhile, the misspecified semi-parametric estimators, such as simple polynomials, are

subject to some misspecification bias but still provide a viable alternative; particularly in

small samples when this bias is dwarfed by sampling uncertainty.

5 Application

I now apply this model and estimation procedure to data from Michigan Department of

Transport’s procurement auctions for highway construction and maintenance contracts. This

setting and data has been considered in several previous studies, including Groeger (2014),

Somaini (2020), Raisingh (2021), and GKS. Contracts are allocated using simultaneous low-

price sealed bid auctions, averaging around 35 contracts auctioned in each round, with rounds

taking place every 2-4 weeks. 73 percent of regular bidders submit bids on more than one

auction in a given round. I focus on road construction and paving projects. These projects

either involve hot-mix asphalt, concrete construction, or both.

The MDOT data exhibits evidence of both dynamic linkages and static complementari-

ties, which I demonstrate in Section 5.2. Similarly, both Raisingh (2021) and Groeger (2014)

find evidence of dynamic linkages in MDOT auctions. They demonstrate evidence of back-

log effects as firms bid less aggressively the larger their backlogs in the MDOT auctions.

Meanwhile, GKS present evidence of complementarities in contracts auctioned simulate-

nously by MDOT. They demonstrate that firms’ costs of taking on new projects increase

is trivial, while for F̂ this is not. Assumptions 4 and 7 and ensure G has a continuous first derivative
with respect to both b and θG. We must also assume that G has a continuous second derivative. This, in
conjunction with the inverse function theorem, ensures b∗(υ|s;θκ,θG) has a continuous first derivative with
respect to θκ,θG. This is because ξ(b|s;θκ,θG) has a continuous first derivative in θκ,θG, and is (at least)
locally invertible in b.
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in their backlogs, but the more similar their current projects the less the dis-economies of

scale. This suggests the need to use a dynamic multi-object auction model to estimate costs.

Understanding the degree of complementarities across lots auctioned either simultaneously

or across time is important for auction design — if the cost synergies are large firms may

suffer from the exposure effect of being unable to express these complementarities, and may

benefit from sequential allocation of contracts.

5.1 Data

I use the same data as GKS, using their data on bids, contracts, and competing firms. This

includes information on almost every auction run between 2002 and 2014. The contract data

includes project descriptions, locations, the engineer’s estimate of project cost, and the list

of participating firms and their bids.

The firm level data includes details on the sub-sample of firms who submit at least 50 bids.

This details the number and location of plants, and a description of the type of company.

Following GKS’s classification a regular bidder is one that submits more than 100 bids in

the sample period, otherwise they are designated a fringe bidder. The final sample contains

44 regular bidders, and 686 fringe bidders. I further categorise regular bidders into one of

three types of firm: General contractors, Paving companies, and Construction companies.

Contract level descriptives are summarised in Figure 1. Around 20 asphalt projects are

auctioned simultaneously each period, predominantly highway maintenance projects. But,

these tend to be smaller projects, in both duration and predicted costs, than the concrete

and mixed projects. These contracts involve construction or bridge maintenance projects,

and so the engineers estimates exhibits a major right skew.

Bidder level descriptive statistics are summarised in Figure 2. A firm’s backlog at t is

calculated as the sum, over current contracts, of the engineer’s estimate (EE) of the cost

for each project multiplied by the fraction of project duration remaining. Backlogs are

calculated separately for each type of project. Unsurprisingly, regular bidders’ backlogs are

much larger than fringe bidders’. Asphalt backlogs are also generally higher than concrete

backlogs due to the larger number of asphalt projects. Paving firms are closer to projects

than fringe bidders because they have more plants.
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Figure 1: Auction level summary statistics.

Asphalt Concrete Both
Number 3563 712 1974
Auctions per Round 20.13 4.02 11.15

(q25 - q75) (5 - 30) (1 - 6) (3 - 17)
Project Duration (days) 134.11 216.52 200.08

(46 - 151) (79.75 - 261.25) (70 - 235.25)
Engineer’s Estimate ($100,000s) 12.61 22.4 19.88

(2.92 - 11.16) (3.65 - 12.16) (4.29 - 17.29)
Bidders per Auction 4.39 5.46 5.94

(2 - 5) (4 - 7) (3 - 8)
Average Bid ($100,000s) 12.75 19.93 18.28

(3.02 - 11.46) (3.78 - 11.85) (4.56 - 16.96)
Winning Bid ($100,000s) 11.98 21.19 18.69

(2.69 - 10.46) (3.34 - 11.46) (3.99 - 16.27)

Note: Aside from the number of auctions, the numbers presented are means. For mixed projects the mean

winning bid is higher than the mean bid. This is caused by the skewed project sizes.

5.2 Suggestive Evidence

I now present suggestive evidence of both dynamic linkages and static complementarities,

evidence that we need both a dynamic and multi-object auction model. Dynamic linkages

arise through backlog effects, creating non-additivities in payoffs across time. Static comple-

mentarities arise through scale effects, as there appear to be cost synergies from working on

multiple similar contracts simultaneously, creating non-addivities in payoffs across contracts

auctioned within a period.

To examine the dynamic linkages I consider how firm’s backlogs of both asphalt and

concrete projects impact their costs, and so their bidding behaviour. I regress a firm’s

bid on project l in period t against their backlog of both types of contracts, as well as

the interaction of the two backlogs. Results are presented in Figure 3. We see that firms

bid more aggressively the larger their backlog of asphalt contracts, suggesting returns to

specialisation: Every one standard deviation increase in their asphalt backlog leads to a 0.025

standard deviation reduction in their normalised bids. Meanwhile, firms bid less aggressively

the larger their concrete backlogs, suggesting decreasing returns to scale.

To examine the static complementarities, I consider how the set of other lots bid on

in period t impacts their costs, and so their bidding behaviour. I examine how bidding
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Figure 2: Bidder level summary statistics.

General Paving Construction Fringe
Plants 1.73 6.71 1.5 1.43
Bids per Round 2.07 2.8 1.8 0.24

(q25 - q75) (0 - 3) (0 - 4) (0 - 3) (0 - 0)
Backlog: Asphalt 5.57 5.61 2.97 0.24

(millions) (0.25 - 3.88) (0.96 - 7.6) (0.48 - 4.39) (0 - 0.2)
Backlog: Concrete 3.41 2.18 2.79 0.2

(millions) (0.18 - 3.41) (0.11 - 3.83) (0.23 - 1.35) (0 - 0.09)
Distance to project (mi.) 105.65 84.18 121.42 119.27
Distance given Bid 71.21 47.03 87.18 69.33
Distance given Won 65.53 45.01 82.51 58.63

Note: Project locations are coded to the centroid of the county they are based in. Distance is calculated as

the minimum distance (across plant locations) between a firm and the project location. I exclude the first

two years of the data to construct backlogs.

behaviour varies with the sum of the engineers estimate of other contracts they bid on in

period t, calculated separately for both asphalt and concrete projects. I regress a firm’s bid

on project l in period t against these two sets of sums of engineers estimates, as well as their

interaction. Results are presented in Figure 3. I find that firms bid more aggressively if

they also bid on many different asphalt projects, but not the number of concrete projects.

However, the positive coefficient on the interaction term suggests that holding constant the

number of asphalt projects they bid on, the more concrete projects they bid on, the less

aggressively they bid. Once more, this suggests evidence of returns to specialisation, in line

with results presented in GKS.

5.3 Estimation and Results

I now apply and estimate the empirical model presented above. While the semi-nonparametric

approach is possible, I follow the literature and take a parametric approach.24 I apply the full

dynamic multi-object model to regular bidders only, given that I need to observe sufficient

observations of bidding to be able to estimate my objects of interest. I estimate separate

parameters for each type of regular bidder. I assume fringe bidders are myopic, and that

24The semi-nonparametric approach suffers from a curse-of-dimensionality. Unfortunately, I need to allow
the pseudo-payoff κ to depend on common/rival states and auction level observables. Instead I parameterise
the model to ensure parameters are interpretable and enable simple tests of additive separability and myopic
bidding.
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Figure 3: Evidence of Complementarities and Dynamics

Note: The plot shows the estimated coefficients from two linear regressions of bids against either bidder’s

backlogs (blue) or the estimated cost of other contracts bid upon (red). Bids are normalised by the EE and

standardised. Independent variables are also standardised. I control for the distance between the firm and

the project, and Firm × project type Fixed Effects, with robust standard errors.

their costs are additive.

In the low-bid auction the lowest bidder receives their bid and pays their private cost,

which involves a minor relabelling of the model. The individual state is the Firm’s backlog

of asphalt and concrete contracts. The common state consists of the set of lots on offer,

including locations and other contract characteristics, such as size, duration, and type.

For simplicity I do not explicitly model firms’ participation decisions. Incorrectly assum-

ing entry is exogenous will bias estimates of the flow payoff function π(s). However, as I

show in Appendix D.3.3 this bias is just the expected participation costs, in this case bid

preparation costs, in the following period. Raisingh (2021) found that bid preparation costs

vary from $5,000 to $10,000, around 1% of the contract cost, suggesting this bias will be

small in relative terms. This assumption may be more problematic for my counterfactu-

als; under counterfactual mechanisms bidders likely win different sets of contracts and may

then choose to participate in different auctions accordingly. However, in Appendix F.1 I

demonstrate that participation behaviour is predominantly determined by lot specific fac-
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tors between firm and contract, most notably the distance between a firm and the project.

None of these factors vary in my counterfactual exercises, and so we do not expect variation

in partipation decisions.25

5.3.1 The State Space Approximation

The state s should include every firms’ backlogs and information on every auction held each

period, which is computationally intractable. It is unlikely that firms would track such a

large state space. I follow the approach taken by Raisingh (2021) and Aradillas-Lopez et al.

(2022). They condense (s−n, s0) into a one dimensional index λnt, approximating the degree

of competition a firm faces on a given day. For each firm I only need to track three states

— two backlogs and this competition index.

I construct λnt using a random forest to predict the minimum rival bid using (s−n, s0).

λnt is then a function of: i) the mean backlog of rival bidders, ii) the number of rival bidders,

iii) the number of auctions held that period.26 Full details of how the index is constructed,

and additional results, are given in Appendix F.2.

5.3.2 First Stage

To simplify estimation I assume firms believe that, conditional on auction characteristics

and firms’ states, the probability they win one auction is independent of whether they win

another auction. This ensures the joint probabilities P can be written as products of the

marginal probabilities.27 Following Athey et al. (2011) I specify the distribution of minimum

rival bids as a three parameter Weibull distribution, with a support parameter as 1
3

of the

25Another worry concerns the independent private value assumption. Somaini (2020) finds evidence of
interdependent costs in the MDOT auctions, essentially suggesting a common value component in bidder’s
payoffs. However their results also suggest that the private value component is the main component of
payoffs. For this reason, I remain in the IPV framework.

26The index assumption implies that a firm’s continuation value does not depend on which combination of
lots each rival bidder wins. Therefore the firm only has to consider 2L outcomes from the round of auctions
(which combination they win themselves), instead of all NL possible outcomes. This is reasonable — it is
unlikely bidders consider how their bids impact the likelihood of their rivals winning different combinations
of contracts. I do not take into account sampling uncertainty in estimating the competition index.

27While I can reject the null hypothesis of independence, the extent of this dependence is extremely
small. I introduce dependence in the below procedure using a Gaussian Copula to allow correlation in these
minimum rival bids. This correlation is allowed to depend on whether the contracts are the same type or in
the same county. The maximum estimated correlation between any two winning bids is 0.0272, which I take
as negligible.
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engineer’s estimate for that contract.28 The scale is a function of auction-level characteristics

and the competition index, denoted using the vector xtl:

Prob(bnlt ≤ min
n′ 6=n
{bn′lt} ; β1, α) = 1− e−(

bnlt−
1
3

exp(xltβ1)
)α

I assume that states transition according to an autoregressive order (1) process:(
λnt

snt

)
= αn +α

(
λnt−1

snt−1

)
+ εnt

Where αn are firm specific intercepts, α is a 3× 3 dimension matrix, that is allowed to vary

by firm type, and εnt is a white noise innovation.29

Results from the first step are given in Figure 10. I present three specification, including

varying sets of Fixed Effects. In later steps I use the County Fixed Effects specification,

dropping the time fixed effects. I estimate the shape parameter well above one, ensuring

that the Markup is monotonically increasing in bids. Note that mean of the distribution is

increasing in the scale. For each of the scale parameters I include separate slope coefficients

for each type of auction. For all three types of auction the winning bid is increasing in the

competition index: When λ is large, so there is little competition, bids are less aggressive.

Meanwhile the magnitude for Asphalt projects is in line with the results presented in Raisingh

(2021). Magnitudes for concrete and mixed projects are similar.

We can interpret the coefficients on engineer’s estimate (EE) as returns to scale, since the

dependent variable (lowest rival bid) is normalised by EE. The persistent negative coefficient

on asphalt suggests increasing returns, in line with GKS and Raisingh’s results. In Appendix

F.3 I present a kernel density plot of the minimum rival bids alongside the fitted distribution,

demonstrating that the Weibull distributional assumption fits the data very well.

5.3.3 Second Stage

I assume the pseudo-static pay-off is quadratic in backlogs. I take this approach, despite

the likely superior performance of a B-spline specification, due to the decreased computa-

28As discussed in Raisingh (2021) this is because several projects appear to have miscalculated estimates.
These are treated as outliers and removed. This occurred in around 0.1% of cases.

29By construction backlogs transition deterministically. However, not all projects are completed at the
same rate. Therefore I must take into account future deterministic backlogs in the state variable. I assume
this transition function for simplicity, as AR(1) processes are often used to model the transitions of inclusive
value indices.
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Figure 4: First Stage Results

Coefficient SE Coefficient SE Coefficient SE
Shape

log(α− 1) 2.029 0.001 2.083 0.001 2.093 0.001
Scale (= exltβ1)

Concrete -0.48 0.001 -0.484 0.002 -0.495 0.003
Asphalt -0.458 0.001 -0.449 0.002 -0.461 0.003
Both -0.44 0.001 -0.45 0.002 -0.462 0.003
Major Road -0.013 0.001 -0.007 0.001 -0.007 0.001
Bridge -0.001 0.001 0.005 0.001 0.003 0.001
MR ×λ 0.048 0.001 0.042 0.001 0.041 0.001
Bridge ×λ 0.027 0.001 0.024 0.001 0.021 0.001
Concrete ×λ 0.183 0.001 0.186 0.001 0.187 0.001
Asphalt ×λ 0.196 0.001 0.198 0.001 0.196 0.001
Both ×λ 0.172 0.001 0.18 0.001 0.181 0.001
Concrete × log(EE) 0.008 0.001 0.001 0.001 0 0.001
Asphalt × log(EE) -0.008 0.001 -0.011 0.001 -0.012 0.001
Both × log(EE) -0.006 0.001 -0.009 0.001 -0.01 0.001
Concrete ×λ× log(EE) -0.006 0.001 -0.004 0.001 -0.004 0.001
Asphalt ×λ× log(EE) 0.001 0.001 0.001 0.001 0.001 0.001
Both ×λ× log(EE) -0.002 0.001 -0.001 0.001 -0.001 0.001
Fixed Effects

County
√ √

Year
√

Month
√

Observations 193545 193545 193545

tional intensity as well as making it easier to interpret the parameter estimates: Testing for

complementarities reduces to testing the significance of the quadratic terms. I normalise

backlogs by the standard deviation of each firm’s observed backlogs, so that backlog effects

are estimated using within firm variation. Parameters can vary across the three firm types,

so for a firm of type m the specification for the pseudo-static pay-off is:

km(st) = λntθ
λ
m + h(snt)

T θκm + λnth(snt)
T θκλm

Where h(snt)
T =

(
sant scnt (sant)

2 (scnt)
2 sant × scnt

)
I make use of additional moments to facilitate estimation. If st does not substantially shift

bidding behaviour there may be a weak instrument problem. This occurs if a firm’s observed

backlog does not vary relatively much, but they bid on many contracts simultaneously so

that the possible ex-post states sct vary much more than st. In this case we are trying to
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estimate κ in regions where there is little variation in our instrument. This would be a

problem if firms are successfully smoothing their backlogs.30

I include several additional instruments, or moment conditions, to ameliorate this prob-

lem. Write −→s l as the amount a firm’s backlog will increase if they win lot l. This is the

engineer’s estimate of the project completion cost, split according to the type of contract.

I make the additional assumption E[υnlt|s + −→s l] = 0, using the ex-post state from only

winning lot l as an additional instrument. Many more potential instruments are available,

using additional ex-post states as instruments. For illustrative purposes I also consider a

specification that makes use of ex-post states from winning pairs of contracts, increasing the

number of instruments ten-fold. However this risks overfitting the first stage.31

Figure 5 presents the results from the second estimation step and includes estimates from

a least squares specification as well as three sets of instruments. Parameter interactions with

the competition index are included in Appendix F.3. Estimates from the third column are

used for the remainder of this application. Results are presented in thousands of dollars. So,

for example, every kilometre increase in distance between a general contractor’s plant (t1)

and the project increases costs by around $170.

The coefficients on backlogs can be interpreted as their effect on the pseudo-payoffs: Ev-

ery one standard deviation increase in a paving company’s (t2) backlog of asphalt projects

increases their pseudo-cost (cost + expected future opportunity cost) by ≈ $870, 000. Coef-

ficients can also be interpreted as how they impact the aggressiveness of the firm’s bidding.

The coefficients on linear backlogs are all positive, suggesting firms bid less aggressively on

larger projects. We cannot interpret the quadratic coefficients from the second stage as ev-

idence of returns to scale. However they give evidence of non-additivities across lots: The

null hypothesis of additive values is rejected with p-value < 0.001.

The post-estimation tests demonstrate that the choice of instruments is important. The

Hansen test of over-identifying restrictions presented in column 4 rejects the null at the 1%

significance level, suggesting these additional instruments are invalid. I cannot reject the

validity of the additional instruments used in column 3. Likewise, the Hausman test for

30This problem is alleviated if we do not use normalised backlogs, using variation across bidders to aid
identification. However for this application this is undesirable.

31The distribution of contract sizes is very skewed, with a small number of extremely large contracts. These
contracts impact backlogs much more than small contracts, and attract higher bids. These observations have
a lot of leverage. To reduce the weight on these observations I weight observations by the inverse of the
engineer’s estimate of lot l (EEl). This is equivalent to using of moment conditions of the form E[ υnlt

EEl
|st] = 0.

Furthermore, it is standard to normalise bids and associated costs by the size of the lot, which makes a similar
assumption.

30



endogeneity in column 1 also fails to reject. Meanwhile, the adjusted Cragg-Donald statistic

in column 2 suggests that the initial state alone is a weak instrument. Therefore, even

though we suspect the estimates from column 1 are inconsistent, they are almost certainly

better estimates than those presented in column 2. This suggests that problems of weak

instruments may be more damaging than failing to instrument at all.

Figure 5: Second Stage Results

Instruments none (OLS) snt snt +−→s nlt snt +−→s nlt +−→s nmt
Type θ̂ SE θ̂ SE θ̂ SE θ̂ SE

Combinatorial
sat

t1 488 19.3 495 346 451 26.6 463 20.4
t2 905 35 1940 2270 852 37 869 25.4
t3 113 5.61 114 1190 113 5.96 113 4.75

sct
t1 392 17.2 254 826 406 20.1 398 17.6
t2 216 40.5 -4,380 9370 233 43.5 221 37.5
t3 55.8 6.2 -10.1 5010 57 6.6 56.7 5.74

(sat )2

t1 -4.36 1.85 -21.6 67.3 -0.967 2.72 -1.76 2.27
t2 -26 4.01 -221 481 -18 4.56 -21.5 3.35
t3 -0.236 0.0645 -0.189 24.6 -0.26 0.0698 -0.246 0.0629

(sct)
2

t1 -12 1.96 0.179 189 -15.9 2.4 -15.5 2.3
t2 -18.6 6.04 741 1530 -26.1 6.91 -23.9 6.34
t3 -0.245 0.0638 7.28 74.3 -0.344 0.119 -0.311 0.093

sat × sct
t1 0.464 3.04 28.2 125 5.3 3.23 7.03 3.15
t2 54.9 12.5 1.27 431 73.1 13.8 72.5 10.2
t3 0.277 0.176 -21.6 103 0.553 0.366 0.482 0.279

Lot specific
Distance

t1 0.159 0.0814 0.238 0.187 0.188 0.0779 0.164 0.0823
t2 0.0597 0.104 -0.0511 0.599 0.0999 0.108 0.0667 0.102
t3 0.159 0.0946 -0.018 2.87 0.166 0.0943 0.159 0.094

Tests (stat) (p-val)
Hansen 36.5 (0.192) - (-) 19 (0.393) 637 (0)
Cragg-Donald - 0.00257 178 119
R2 0.6 -10.8 0.597 0.599

Note: Including county and firm × contract type fixed effects. Col 1 Hansen test is a Hausman test of

endogeneity, using instruments from col 3. Figures are given in 000s of dollars. The two-step consistent

standard errors are clustered within bidder days. I winsorise the bottom percentile of estimated Γl(bnlt)
∇bΓl(bnlt)

,

since the tails of the distribution are likely to be poorly estimated. Estimation uses T = 3919 observations.
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5.3.4 Third Stage

After forming the expected maximised period pay-off ˆ̄W (bt|κ̂; st) I evaluate the ex-ante value

function by approximating the conditional expectation over bt using a linear in parameters

prediction of W̄t given h(st).
32 This ensures the ex-ante Value Function, for a firm of type m,

can be written as: E[ ˆ̄Wm(bt|κ̂; st)|st] = µn + h(st)
T θVm. Observations are weighted according

to their inverse variance, using var(θ̂κm). The quadratic form of h and the AR(1) transition

process implies E[h(st)|st−1] = h(st−1)T θτm, where θτm is a |h| × |h| dimensional matrix

function of αm. This also implies I can write π(snt) = h(snt)
T θπm.

Figure 6 presents results from the third estimation step. Costs are increasing linear

backlogs for all three types of firm. However, the magnitudes are much smaller than the

linear coefficients estimated in the second stage. This suggests large anticipated opportunity

costs from high backlogs. This result is sensible since projects have very long durations.

By considering the quadratic terms we see that general contractors only exhibit increas-

ing returns to scale, or increasing returns to specialisation, in concrete contracts. Mean-

while, both paving and construction companies exhibit increasing returns for both types

of contracts, but with a negative cost interaction. Taking on concrete (asphalt) projects

come with additional costs for these firms already specialised in asphalt (concrete) projects.

In Appendix F.4 I consider how my results compare to results from misspecified dynamic

single-object, and static multi-object models. I find that the dynamic single-object model

under-estimates the degree of non-additivity across lots. The static multi-object model over-

estimates the effect of backlogs on costs, mistaking expected future costs for present costs.

5.4 Counterfactual

I now consider how procurement costs and efficiency change when contracts are allocated

using sequential first-price auctions. This is an interesting counterfactual as it speaks to

the importance of the ‘exposure problem’ as well as the value of ‘batching’. Furthermore,

many empirical dynamic auction papers assume contracts are auctioned sequentially anyway,

making this a useful comparison for researchers.

Theoretical results suggest sequential allocation will be less efficient than simultaneous

32This assumption is technically incompatible with the parametric assumption made above. However we
can test the extent of the misspecification error using a standard RESET test. I am unable to reject the
null of no specification error (at the 10% significance level) using a RESET test of order 10. Meanwhile no
explicit parametric assumptions were made on the distributions of b or υ.
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Figure 6: Third Stage Results

Object π(sn) V (s) κ(s)

Type θ̂ SE θ̂ SE θ̂ SE
λ

t1 0 (-) 5.39 0.63 6.79 0.763
t2 0 (-) 15.6 1.58 6.47 1.69
t3 0 (-) 6.81 0.713 1.81 0.228

sat
t1 123 7.01 -451 26.6 451 26.6
t2 285 11.3 -839 37.1 852 37
t3 40 1.92 -103 6.07 113 5.96

sct
t1 107 5.35 -405 20.1 406 20.1
t2 89.1 11.9 -207 43.5 233 43.5
t3 15.6 1.91 -57.8 6.63 57 6.6

(sat )2

t1 -0.337 1.29 1.74 2.73 -0.967 2.72
t2 -9.26 2.46 18.6 4.65 -18 4.56
t3 -1.34 0.147 -2.13 0.292 -0.26 0.0698

(sct)
2

t1 -7.6 1.13 15.5 2.41 -15.9 2.4
t2 -14 3.38 23.4 6.95 -26.1 6.91
t3 -0.479 0.102 -0.262 0.202 -0.344 0.119

sat × sct
t1 1.38 1.52 -6.7 3.25 5.3 3.23
t2 33.4 7.12 -80.4 13.9 73.1 13.8
t3 0.432 0.199 -0.237 0.405 0.553 0.366

Fixed Effects
Firm

√ √

allocation (batching).33 Bidders do not know what types of contracts will be auctioned in the

near future, making it more difficult to exploit cost synergies. However, batching contracts

but not allowing firms to place combinatorial bids also limits their ability to exploit synergies

(the exposure problem). Sequential allocation may improve efficiency by giving bidders

greater control over their cost synergies, reducing the likelihood that bidders accidentally

win too many or too few contracts. These effects will be more pronounced the larger the

degree of complementarities (positive or negative) across lots. The effects of this alternate

procurement mechanism are ex-ante unclear.

33See Akbarpour et al. (2020) as an example. I ignore that collusion is easier to sustain in sequential
auctions (Hendricks and Porter, 1989), further increasing procurement costs.
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5.4.1 The Counterfactual Mechanism

I now briefly discuss how I simulate equilibrium bidding under the counterfactual mecha-

nism. See Appendix F.5 for full details. Contracts are auctioned sequentially, in random

order, within each 14 day period. Consistent with the estimated model I assume projects

begin before the next auction. I use the same competition index λnt to capture changes in

competition within these periods. Firms have beliefs about the probability they win any

given lot, conditional on lot characteristics and λnt. Firms place bids conditional on their

beliefs, backlogs, and their continuation value, defined as in the main model.34 I find equilib-

rium beliefs and value functions using fixed point iteration: I repeatedly simulate the auction

process until value functions and the distribution of winning bids converges.

5.4.2 Results

Figure 7 presents estimates of the average cost per contract for firms and MDOT, in thou-

sands of dollars, under the simultaneous auction regime and the counterfactual sequential

auction regime. The key takeaway is that sequential auctions decrease efficiency and raises

procurement cost. Procurement costs are estimated to increase by an average of $19, 000 per

contract (1.3%), while for firms completion costs increase by an average of $110, 000 per con-

tract (9.4%). This suggests the batching effect dominates the exposure effect. In particular,

the information benefit of batching is key: While bidding on a particular contract, firms do

not know which contracts will be auctioned later in the period. In the counterfactual firms

bids 1.2% less aggressively on contracts they were actually observed winning, demonstrating

they are unaware that they will be able to exploit a cost synergy with a lot being auction

later in the period.

However, the increase in procurement cost is much smaller than the increase in completion

costs because firms face more competition for each contract. At any one time, instead of

N firms competing for L contracts there are N firms competing for 1 contract, unsure

of when any future contracts will be auctioned. Markups are around 40% lower under

sequential auctions, but this increase in competition remains dominated by the batching

effect. Furthermore, this competition finding strongly relies on the assumption of a non-

34I assume firms only place bids on the set of auctions they actually bid on. Given my assumption of
negligible entry costs, firms were only observed bidding on the contracts they have the largest cost advantages
in. If their cost advantages were mostly additive, such as due to low υnlt draws, they will have the same
advantage under the sequential mechanism, and so bidding on this set of lots will remain optimal. Therefore
my estimates can, to an extent, be considered lower bounds on costs.
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collusive equilibrium.

Figure 7: Counterfactual Results

Mechanism Outcome Estimate ($000s) S.E.
Simultaneous Auctions Procurement Cost 1470 -

Completion Cost 1170 4.28
Sequential Auctions Procurement Cost 1489 3

Completion Cost 1280 22.6

Note: The results are based on 60 draws of parameters from their estimated asymptotic distribution. Equi-

librium Beliefs and Value Functions are computed for each draw.

6 Conclusion

In this paper I did three things: First, I set-up a dynamic multi-object auction model

and proved that the model primitives are identified from standard bidding data. Second,

I proposed a computationally convenient estimation procedure to overcome the technical

challenges of estimating model primitives in this setting. Finally, I applied the model to data

from Michigan Department of Transport’s procurement data and evaluated the efficiency

and revenue of holding repeated rounds of simultaneous auction relative to auctioning all

contracts sequentially.

This paper was motivated by the prevalence of such repeated, multi-object auctions.

Significant complementarities between auctioned objects have been found in both the dy-

namic single-object literature, and the static multi-object literature, most notably in JP and

GKS. However, these two types of model had not, until this point, been unified in a single

framework.
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Appendices

A Proof of Proposition 3

In this Appendix I essentially extend Proposition 1 from JP to the multi-object case, proving

Proposition 3 from the main text.
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Proof: 1. Necessary First Order Conditions are given by:

∇bΓ(b∗|s)(υ − b∗) = Γ(b∗|s)−∇bP (b∗|s)Bsπ − β∇bQ(b∗|s)AsV

2. Left multiplying by Γ(b∗|s)T∇bΓ(b∗|s)−1 yields: Γ(b∗|s)T (υ − b∗) =

Γ(b∗|s)T∇bΓ(b∗|s)−1[Γ(b∗|s)−∇bP (b∗|s)Bsπ − β∇bQ(b∗|s)AsV]

3. Substituting Γ(b∗|s)T (υ − b∗) into equation 2 gives the result.

Given Proposition 3 we take an expectation over the expected stage payoff, with respect

to observed bids, to show that the ex-ante value function can be written as a function of the

distribution of equilibrium bids and κ̄(s) only.

B Proof of Proposition 4

I now prove that Ψ(IS − βTΩ)−1C has rank Si − 1. The proof is in three parts. First, I

establish the rank of Ψ, then find its null space. I then demonstrate that the intersection of

this null space and the image of (IS − βTΩ)−1C only contains a single element.

B.1 Rank of Ψ

First, define the partial ordering �∗ such that if sn � s′n then s �∗ s′. This simply extends

the partial ordering of the individual state to the overall state.

Define a ‘component’ SC as a subset of S that is ‘connected’ by this partial ordering.

Formally, s, s′ ∈ SC if and only if there exists a non-directed path between the states; that

is if there exists a (finite) sequence of states beginning with s, ending with s′ where for each

pair sk, sk+1 in this sequence either sk �∗ sk+1 or sk �∗ sk+1. By definition s0 does not vary

within a component, and in general there is one component corresponding to each element

of S0. The SC components form a partition of S.

Finally, denote m̃in(S) as the subset of S, such that ∀s ∈ m̃in(S) : @ s′ ∈ S : s ∈ Sc(s′).
This is primarily for notational convenience, and may not coincide with the minimal elements

of S. Instead, this is the (potentially empty) set of states that never occur as possible ex-post

states. Intuitively, pay-offs from ending in these states are be identified.
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B.1.1 Additional Lemmas

Lemma B.1. From any two distinct, non-maximal, states, s and s′, if s′ �∗ s then there

exists a state sc such that sc ∈ Sc(s) & sc /∈ Sc(s′)

This states that if one non-maximal state is not ‘higher’ in the partial ordering than

another, their set of ex-post states cannot perfectly overlap. The proof examines whether

the maximal element of Sc(s) (when bidder n winning every lot, denoted salln) can be an

element of Sc(s′). I exploit that Scn(sn, s0) forms a lattice, with minimal state corresponding

to winning no lots, and maximal state corresponding to winning every lot.

Proof: 1. Suppose s′ �∗ s. Therefore either s �∗ s′, or the states are incomparable.

2. If s �∗ s′ they are in the same component, so s0 = s′0. Assumption 6 iii) implies

the maximal (win all) element of Scn(sn, s0) is ‘greater’ than the maximal element

of Scn(s′n, s0), hence maximal(Scn(sn, s0)) /∈ Scn(s′n, s0).

3. If s and s′ are incomparable, then s and s′ either belong to different components,

or the same component. If they belong to different components then by definition

Sc(s) and Sc(s′) must be mutually exclusive.

4. If s and s′ are incomparable but in the same component then Assumption 6 iii)

ensures maximal(Scn(sn, s0)) and maximal(Scn(s′n, s0)) are incomparable. There-

fore, it cannot be that maximal(Scn(sn, s0)) ∈ Scn(s′n, s0), since Scn(s′n, s0) is a

lattice it requires maximal(Scn(sn, s0)) � maximal(Scn(s′n, s0))

Lemma B.2. Ψ(s)As has rank at least 2 if, for all s,υ, l, Γnl(b(υ, s)|s) ∈ (0, 1)

The proof proceeds by first showing that rank(Ψ(s)) is weakly greater than two, then

using the full rank property of the transformation matrix As.
35

Proof: 1. Denote by Ψ̃ the L×L(N − 1)L−1 sub-matrix of Ψ(s) consisting of the columns

of Ψ(s) corresponding to outcomes in which player n wins exactly one lot.

2. Row l, column c of Ψ̃ is strictly positive for columns corresponding to outcomes

c in which bidder n wins lot l. This is because the probability that n wins lot l,

and no other lot, is strictly increasing in bl.

35In general Ψ(s)As has rank L. Essentially, each state gives us L pieces of information, rather than just
two pieces of information. However, proof that the rank is always L has proven elusive.
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3. Row l, column c of Ψ̃ is strictly negative for columns corresponding to outcomes

c in which n does not win lot l. This is because the probability lot l is won, and

no other, is strictly decreasing in bm for m 6= l.

4. Any two rows of Ψ̃ are linearly independent: Each row contains one positive

entry, each in a distinct column.36 Therefore, Ψ̃, and hence Ψ(s) have rank ≥ 2.

5. Matrix As is a rankNL transformation matrix for any non-maximal s. Therefore,

from step 4, Ψ(s)As for non-maximal s has rank at least 2.

B.1.2 Rank(Ψ) = S − SC − |m̃in(S)|

I show that as we stack these Ψ(s)As matrices for non-maximal s, the rank increases by at

least two each time. However, by definition columns corresponding to elements in m̃in(S) are

all zero, ensuring the rank is deficient by at least |m̃in(S)|. Likewise, for each submatrix of

Ψ made up of rows corresponding to states that are all within the same component (denoted

by ΨC , a |SC | × S matrix), rows all sum to zero. This ensures each ΨC is rank deficient by

at least one, and so Ψ is rank deficient by at least SC .

Proof: 1. Order elements of S (likewise, columns of Ψ) according to the partial ordering

�∗. Incomparable states are ordered at random. So, for each s, the furthest left

non-zero column of Ψ(s)As is in the column corresponding to the ex-post state

in which player i wins every lot salln .

2. Focus on one component, SC . Find the ‘smallest’ state within SC , sC1 (i.e. right

most column index of Ψ). This must be a minimal element of SC .

3. Find the second smallest state sC2 , which may also be a minimal element. Ver-

tically stack the matrices Ψ(sC1 )AsC1
and Ψ(sC2 )AsC2

, for ΨC
{1,2}.

4. ΨC
{1,2} has rank ≥ 4. Lemma B.2 ensures that both matrices have rank 2, while

lemma B.1 ensures that each row of Ψ(sC1 )AsC1
is linearly independent of each

row of Ψ(sC2 )AsC2
. This last point arises because lemma B.1 ensures that since

sC1 �∗ sC2 there must be at least one column of non-zero entries in Ψ(sC2 )AsC2

that matches up to an all-zero column of Ψ(sC1 )AsC1
.

36This only holds for L ≥ 3. For L = 2 we must also assume E[Γ1 + Γ2] 6= 1.
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5. Continue this process for each non-maximal state in component SC . At each

stage, based on the ordering of elements in S at step 1, and from lemmas B.2 and

B.1, Ψ(sCn )AsCn
must always contain at least one non-zero column that matches

up to an all-zero column of ΨC
{1,2...N−1}. Typically this is the furthest left column,

corresponding to sC alln
N . Therefore, the rank increases by at least 2 each step.

6. The final matrix ΨC
{1,2...} has non-zero entries somewhere in each of the |SC |

columns corresponding to states in this set, except for columns correspond

to elements of m̃in(SC). These columns are all zeros — there is always zero

probability of ending in these states. As the rank of this matrix increased by

≥ two at each additional non-maximal state, and because we have at least

as many non-maximal states as maximal states, this matrix must have rank

≥ |SC | − |m̃in(SC)| − 1. The rank cannot exceed this, and must be strictly less

than |SC | − |m̃in(SC)| because the row sum for each row of this final matrix

equals zero, a property inherited from the fact that QT ι = 1.

7. Any two components SC and SC′ are mutually exclusive. Therefore, the two

matrices for any two components ΨC
{1,2...} do not share non-zero columns. As

we stack these matrices across different components, the ranks sum together at

each step.

8. Therefore rank(Ψ) =
∑

SC⊂S |SC | − |m̃in(SC)| − 1 = S − |m̃in(S)| − SC

B.2 nullspace of Ψ

B.2.1 The |m̃in(S)| elements

Ψ contains only zeros in columns corresponding to states in m̃in(S). Any vector y containing

non-zero entries only in rows corresponding to elements of this set is in this null space. Denote

this set of vectors Y1, with |m̃in(S)| distinct elements.

B.2.2 The Sc elements

Consider the vector y such that ys = ys′ if s and s′ belong to the same component. Denote

this set of vectors Y2, containing SC distinct elements. As established above, columns of

the submatrix ΨC
{1...|SC |} that correspond to states in different components contain all zeros,

from the definition of a component.
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Therefore, for any y ∈ Y2 we have ΨCy = 0. Entries of y are constant across rows that

correspond to the non-zero entries of ΨC
{1...|SC |}. This holds for any C. Therefore, as we stack

the ΨC
{1...|SC |}s into Ψ we will have Ψy = 0 for any y ∈ Y2.

B.3 Image of (IS − βTΩ)−1C

I have established that the null space of Ψ is given by Y1 ∪ Y2. I now show that the

intersection of this space and the image of (IS−βTΩ)−1C only contains the constant vector,

denoted ιSn . This result requires three additional lemmas:

Lemma B.3. For any y ∈ Y1 we have Ωy = 0.

Proof: 1. Recall that Ω(s) = Eb[Q(b∗|s)T − Γ(b∗|s)T∇bΓ(b∗|s)−1∇bQ(b∗|s)|s]As

2. Asy = 0 for y ∈ Y1, since As selects elements of y corresponding to possible

ex-post states, given beginning in s. But y only contains non-zero entries for

states that are never observed as ex-post states.

Lemma B.4. For any y ∈ Y2 we have Ωy = y.

Proof: 1. For y ∈ Y2 Asy = ysι2L , where ι2L is a 2L× 1 vector of ones. This is because As

selects the elements of the vector y that correspond to states that are possible

outcomes from an auction round beginning in state s. By definition these ex-post

states are all in the same component, while y is constant within components.

2. As the rows of Q(b∗|s)T sum to one, we have Eb[Q(b∗|s)T |s]ι2L = ι2L .

3. As rows of ∇bQ(b∗|s) sum to zero (derivative of a vector with rows summing to

one) we have: E[Γ(b∗|s)T∇bΓ(b∗|s)−1∇bQ(b∗|s)|s]ι2L = 0

4. Therefore Ω(s)y = ysι2L for y ∈ Y2. Stacking over s yields the result.

Finally, for y ∈ Y2 we can write y = M ȳ Where ȳ is an SC × 1 vector containing the

constant elements of y from component. Meanwhile M is an S × SC dimensional matrix

that contains a 1 in a row corresponding to state s and column corresponding to component

C if s ∈ SC , and zero otherwise. Each row of M contains a single 1.

42



Lemma B.5. Let the matrix N be any SC × SC submatrix of (I − βT )M that is formed by

selecting one row from each of the SC components. N is non-singular.

Proof: 1. Select SC states, one from each component, and denote the corresponding set

of rows of by M. The sub-matrix of interest is denoted MM,. − βTM,.M

2. MM,. = I. This is because we chose one row of M associated with each com-

ponent. Each row of M contains a single 1, therefore so must MM,.. Because

every row is associated with a different component, each row contains a 1 in a

different column.

3. Elements of the SC × SC sub matrix TM,.M are just transition probabilities, so

TM,.MιSc = 1. This is because right multiplying by M causes us to sum over

states within a component. For a particular row t we have element C of the row

vector Tt,.M is equal to
∑

s : sC=sC̃ P (s|st). That is, the probability, given ending

a period in state st, that they begin the next period in component C.

4. Diagonal entries of the matrix I−βTM,.M are strictly positive, as β× a probability

is strictly less than 1 (for β < 1). Likewise, off diagonal entries are weakly nega-

tive, as we have −β× a probability. Last, rows must sum to 1−β because rows

of both I and TM,.M sum to 1. This ensures this matrix is strictly diagonally

dominant. Therefore, from the Levy–Desplanques theorem, the matrix must be

non-singular.

B.3.1 Image((IS − βTΩ)−1C) ∩ null(Ψ) = ιSi

The proof employs the result TιS = ιS (rows of a transition matrix sum to one). The proof

proceeds by first demonstrating that the image of (IS − βTΩ)−1C does not intersect Y1.

Next, that the intersection with Y2 only contains the constant vector.

Proof: 1. Suppose there exists an x such that for some y ∈ Y1 we could write y =

(IS − βTΩ)−1Cx. Equivalently, (IS − βTΩ)y = Cx.

2. From Lemma B.3 this implies y = Cx. In turn, from the definition of C this

requires x contains zeros in every entry except the first.

3. However this cannot be the case, since we always normalise this first entry to

zero. Therefore image((IS − βTΩ)−1C) ∩ Y1 = ∅
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4. Next, suppose there exists an x such that for some y ∈ Y2 we could write

y = (I − βTΩ)−1Cx. Equivalently (I − βTΩ)y = Cx

5. From Lemma B.4 Cx = (I − βT )y = (I − βT )M ȳ. In matrix form:

(
M − βT̄ −C

)(ȳ

x

)
= 0

Where T̄ = TM , the probability of transitioning to any component from any

state. If (M − βT̄ ,−C), the S × (SC + Sn) matrix has rank SC + Sn − 1 then

there is a unique y and x where this relationship holds.

6. I now show the first column of −C is linearly independent of (M − βT̄ ). −C.,1
contains −1 in every element associated with states such that sn = s1

n and zeros

otherwise. No linear combination of the columns for the corresponding rows of

(M − βT̄ ) can match these zeros. Choose SC rows of (M − βT̄ ) such that each

row is associated with a state from a different component. E.g. rows such that in

each component sn = sSnn — the ‘final’ individual state. Call the corresponding

SC × SC submatrix of M − βT̄ N . From Lemma B.5 N is non-singular. No

SC × 1 vector z exists such that Nz = 0. Therefore columns of (M − βT̄ ) are

linearly independent of −C.,1. By concatenating this column, the rank increases

by one.

7. Repeat this process for columns k = 2...Sn − 1 of −C. That is, every column

except the final column which is the only column to contain non-zeros in entries

associated with sSnn .37 Each of these columns must be linearly independent of

M − βT̄ - no linear combination of its columns can match the zero entries of

−C.,k, since any SC×SC submatrix that consists of one row from each component

must be non-singular.

8. Columns of −C are linearly independent. So, at each step n the rank increases

by 1. Therefore rank(M − βT̄ ,−C) ≥ SC + Sn − 1.

9. (ȳ = ιSC ,x = (1−β)ιSn) lies in the null space of (M−βT̄ ,−C). This is because

(M − βT̄ )ιSC = (1− β)ιS while we also have C(1− β)ιSn = (1− β)ιS. Appeal

to the rank-nullity theorem for Image((IS − βTΩ)−1C) ∩ null(Ψ) = ιSN

37This assumes one individual state exists within each component (I used sSi
n ). This holds if S = S0 ×∏

n Sn. This is not necessary — the only requirement is that at each step k I can select one state from each
component such that the corresponding rows of −C.,k are all zero.
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C Proof of Proposition 1

In this Appendix I prove Proposition 1, which states that under the assumptions of the

game, and under Conjecture 1, a Symmetric Markov Perfect Equilibrium exists.

First I prove that, conditional on Conjecture 1, a Pure Strategy Bayesian Nash Equilib-

rium exists in the stage game. I then show that the equilibrium pay-off in the stage game

is consistent with the continuation value, employing Kakutani’s fixed point theorem. This

requires showing the existence, convex-valuedness, and upper hemicontinuity of the contin-

uation value. While I assume entry is costless in my identification framework, bidders still

make a strategic decision over which auctions to enter. Therefore I consider the entry game

when discussing equilibrium existence.

Proof: Equilibrium of the entry game: player i chooses entry decision d to maximise

their expected payoff, taking an expectation over rivals’ entry decisions given their

strategies. This is a standard game of incomplete information.

A symmetric equilibrium in distributional strategies exists (Milgrom and Weber,

1985). Because types are atomless, existence of a Pure Strategy equilibrium fol-

lows from their purification result. This equilibrium may not be unique, so the value

function may not be continuous. Continuity arises by augmenting entry strategies to

be a function of the realisation of a public random variable (Fudenberg and Maskin,

1991). Public randomisation enables players to coordinate equilibria. Conditional on

this public random variable the set of equilibrium pay-offs is convex (Aumann, 1974).

Equilibrium existence of the dynamic game requires that the equilibrium pay-off in

the stage game is consistent with the continuation value.38 That is, can we write

the ex-ante value function VE
t , stacked over s, as a function of VE

t+1, so that VE
t =

Ω(VE
t+1) (existence). Stationarity requires the correspondence Ω has a fixed point:

VE = Ω(VE).

Existence of VE
t = Ω(VE

t+1): Taking an expectation over Equation 1 with respect

to υnt ensures we can write the ex-ante value function recursively. Existence then

38Symmetry of the dynamic equilibrium arises because equilibrium in the stage game is symmetric, with
strategies depending on states not identities or time periods.
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follows from the assumption that pay-offs are bounded, ensuring the set Ω(VE
t+1) is

non-empty.

(non-)Uniqueness of Ω(VE
t+1): The possibility of multiple equilibria in the entry

game imply the value function is non-unique. So the ex-ante value function is also

non-unique. Fortunately Ω must be convex valued, as the set of equilibrium pay-offs,

conditional on the public random variable, is convex.

Upper-hemi continuity of Ω(.): The continuation value is continuous in VE
t+1,

taking an expectation over the transition process. Consider the conditional value

function, conditional on entry decision d̄: W̃n(d̄,υnt, st;σ−i) =

max
b

{
Γn(b, d̄;σ−n)T (υnt − b) +Qn(b, d̄;σ−n)T [Πn(st) + βVn(st;σ−n)]

}
Continuity of W̃t in VE

t+1 is guaranteed by conjecture 1, which requires equilib-

rium expected pay-offs are continuous in Πn + βVn. The value function is then

Wn(υnt, st;σ−n) = max
d

{
W̃n(d,υnt, st;σ−n)

}
. Upper-hemi continuity of Wt in W̃t,

and hence in VE
t+1, arises from our public random variable (Fudenberg and Maskin,

2009).39 Upper-hemi continuity of VE
t arises from the ex-ante value function taking

an expectation over states.

Existence of a stationary dynamic equilibrium: In order to show existence

of a stationary equilibrium we must show that there exists a fixed point of the cor-

respondence VE = Ω(VE). As Ω() is non-empty, convex valued, and upper-hemi

continuous, we can apply Kakutani’s fixed point theorem. Therefore, a Markov Per-

fect Equilibrium exists.

39Public randomisation ensures that the set of equilibrium pay-offs is convex. Public randomisation means
Wt is the convex hull of possible equilibrium pay-offs from entry, W̃t. Therefore, so long as W̃t is compact
valued, Wt is upper hemicontinuous (Charalambos and Aliprantis, 2013). Compact valuedness comes from
pay-offs being drawn from a compact set.
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D Extensions

D.1 Second-Price Auctions

My identification results extend, almost trivially, to second price auctions. I do not discuss

estimation of the second price model. However the estimation procedure presented in Section

4 can easily be applied, making use of the inverse bid system presented below.

D.1.1 Setup

In the second price setting n wins lot l at time t if bnlt > max
n′
{bn′lt}. As in the text, let

Γ(b|s) denote the L×1 equilibrium marginal probabilities of winning each lot. Define vectors

P and Q similarly. The Value Function is given by: Wn(υnt, st;σ−n) =

max
b

{
Γn(b;σ−n)T (υn − b̃(b; st)) + Pn(b;σ−n)TΠn(st) + βQn(b;σ−n)TVn(st;σ−n)

}
(9)

Where element c of Vn is Vnc(st;σ−n) =
∫
s

∫
υ
Wn(υ, s;σ−n)dF (υ|s)dT (s|sct). b̃(b; st) gives

the expected second highest bid, given that bnlt is the highest. Since the cdf of the highest

rival bids is Γl(x|s), we can write Γl(bl|s)b̃l(b; s)) =
∫ bnlt
bl

b̄l∇blΓl(b̄l|s)db̄l.

D.1.2 First Order Conditions and Inverse Bid System

Rewrite the maximand: Γ(b|s)Tυ −
∑

l

∫ bl
bl
b̄l∇blΓl(b̄l|s)db̄l + P (b|s)Π(s) + βQ(b|s)V (s)

Differentiate for FOCs: 0 = ∇bΓ(b∗|s)(υ − b∗) + ∇bP (b∗|s)Π(s) + β∇bQ(b∗|s)V (s).40

We then invert the FOCs for the inverse bid system:

ξ(bnt|Π, βV ; s) = bnt −∇bΓ(b∗|s)−1[∇bP (b∗|s)Bsπ +∇bQ(b∗|s)AsβV]

This is similar to the inverse bid system presented in text, omitting the mark-up term

∇bΓ(b∗|s)−1Γ(b∗|s). Consequently, conditional on π and βV, the distribution of lot specific

values F is point identified from the empirical quantiles of ξ(bnt|Π, βV ; s).

40This condition can equivalently be derived by requiring that, at the optimum, b∗lt equals the marginal
expected pay-off from winning lot l, conditional on bids for lots m 6= l.
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D.1.3 Extension of Proposition 3

I now extend Proposition 3 to the second price case:

Π̃(b∗|υ; s) =Γ(b∗|s)T (b∗ − b̃(b∗; s))

+ [P (b∗|s)T − Γ(b∗|s)T∇bΓ(b∗|s)−1∇bP (b∗|s)]Bsπ

+ [Q(b∗|s)T − Γ(b∗|s)T∇bΓ(b∗|s)−1∇bQ(b∗|s)]AsβV

This is similar to the expression given in Proposition 3, except that the optimal lot specific

surplus term is given by b∗ − b̃(b∗; s) instead of ∇bΓ(b∗|s)−1Γ(b∗|s). Proof is omitted due

to its simplicity — simply substitute the inverse bid function ξ(bnt|Π, βV ; s) for υ into the

maximand of the value function in equation 9.

Employing the identity P (b|s)TBs = Q(b|s)TAsC, and taking an expectation over the

observed bids, write the ex-ante value function as:

V e(s) = Φ̃(s) + Ω(s)[Cπ + βV] Where Φ̃(s) = Eb[Γ(b∗|s)T (b∗ − b̃(b∗; s))|s]

And Ω(s) was defined in the text. Stack this equation over s for: V = T Φ̃ + TΩ[Cπ + βV]

Which we can invert for: V = (IS − βTΩ)−1[T Φ̃ + TΩCπ].

D.1.4 Identification

As in the main text I impose the mean zero property of υ for:

0 = Eb∗ [ξ(b∗; s, (π,V))|s] = Eb∗ [b
∗|s]− Eb∗ [∇bΓ(b∗|s)−1∇bQ(b∗|s)|s]As[Cπ + βV]

= Υ̃(s)−Ψ(s)[Cπ + βV]

Stack over s and substitute in V for: 0 = Υ̃ − βΨ(IS − βTΩ)−1T Φ̃ − Ψ(IS − βTΩ)−1Cπ.

There is a unique solution to this system (π is point identified) if and only if the LS × Sn
matrix Ψ(IS − βTΩ)−1C has rank Sn − 1. This matrix is the same as in the main text.

Proposition 4 holds in this case as well, ensuring the rank condition.

D.2 Binding Reservation Prices

I now introduce binding reservation prices. A reservation price is binding if, in equilibrium,

there is non-zero probability of winning a lot at the reservation price. This also extends to
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endogenous entry with zero entry costs — where reservation prices are necessary to prevent

arbitrarily low bids. Binding reservation prices do not pose a substantive problem, though

do introduce additional mathematical complexity.

In the presence of reservation prices a bidder with a low value may choose not to bid

strictly above the reservation price. This results in corner solutions as bids clump at the

reservation price. We lose point identification as the FOCs no longer point identify υn. This

is a problem, even in a single object context.

The identification argument presented below diverges from the argument presented in

3. Instead, it is closer to the estimation method presented in Section 4. Identification is

demonstrated in an additional step. First I show that F is (partially) identified conditional

on (Π, V , β), but in particular it is partially identified conditional on J + βV . I then

show that the object π(sn) + βV (s) is partially identified, (for some sn it is only bounded).

This is shown using quantile moment conditions: Instead finding the π + βV such that

E[ξ(b; s, π + βV )|s] = 0 I find it such that P (ξl(b; s, π + βV ) ≤ 0|s) = 0.5, imposing a zero

conditional median assumption. Finally, I show that conditional on the identification of F

and π + βV , V is identified, and hence π can be backed out given an assumption about β.

D.2.1 Changes to the Model

Denote the reservation price as R, which may vary across lots, bidders, and time. Denote

player n’s entry decisions by dnt with entry dntl = 1 if they enter lot l, and zero otherwise.

Adjust G,Γ, P and Q to be functions of bids and entry — if a player does not enter a lot,

they lose that lot with probability 1. Identification requires an additional assumption:

Assumption 8. ∂Γnl(bn,dn|s)
∂bnm

= 0 for m 6= l

I assume the probability an individual wins any given lot, conditional on s and σ−n,

only depends on their bid for that lot. This implies ∇Γn(bn,dn|s) is a diagonal matrix.

This assumption was not previously necessary for identification. If ties happen with zero

probability or if tie breaking is exogenous, then this assumption will hold.41 Finally, I assume

41For mathematical convenience I assume ties occur in equilibrium with zero probability. The argument
below can be easily extended to allow for ties at the reservation price. All that changes is that it introduces
a discontinuity in the inverse bidding system at the reservation price, so that as the bidder goes from bidding
the reserve to just above it, their payoff changes discontinuously. This slightly changes how we identify F ,
as we must essentially introduce an additional discrete choice of whether the bidder bids the reservation
compared to bidding just above it. This additional discrete choice then restores the (upper-hemi) continuity
of equilibrium, payoffs.
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the lot specific values have zero conditional median, replacing the previous zero conditional

mean assumption. I am then able to prove the following:

Proposition 6. Given assumption 2, 3, 4, 5, and 8, both Fn(.|s) and κ̄n(s) are non-

parametrically partially identified. κ(sc) is point identified if we observe the individual bidding

b > R on a lot that may yield pay-off κ(sc).

That is, we will point identify the truncated distribution Fn(.|υ >= A1; s), as well as the

objects Fn(A1; s)− Fn(A2; s) and Fn(A2; s) for known A1, A2.

While I assume players play pure strategies conditional on entry, I allow for the possibility

that players play mixed strategies in their entry decisions. We use bidders’ entry decisions to

bound the payoffs of unentered auctions, exploiting that, at the equilibrium mixing strategy,

players can not strictly prefer to enter any other combination of auctions.

D.2.2 Identification of F , conditional on K.

Under assumptions 2 - 5, and 8, and conditional on κ being point identified, the cdf F is

non-parametrically partially identified. Similar to case 6.3.1.2 described in Athey and Haile

(2007), we invert observed bids such that bl > R, point identifying υl. For bids at the

reservation price and for non-entered auctions we can then find bounds on υl.

First, reformulate the problem to include entry decisions. The player’s problem is to

decide which auctions to enter (d), then set their bids (b) to maximise payoffs, subject to

their bids being weakly above reservation prices. The Lagrangian and corresponding FOCs

for this problem, conditional on entry d∗, is given as:

L(b,d∗,υ,λ|s) = Γ(b,d∗|s)T (υ − b) + P (b,d∗|s)T κ̄+ λT (b−R)

0 = ∇bΓ(b∗,d∗|s)(υ − b∗)− Γ(b∗,d∗|s) +∇bP (b∗,d∗|s)T κ̄+ λ∗

Entry ll of ∇bΓ(b,d|s) and entry lc of ∇bP (b,d|s) are as they were in section 3 if dl = 1,

and normalised to 0 otherwise. Rearrange this equation for:

ξ(b∗,d∗,λ|κ̄; s) = b∗ +∇bΓ(b∗,d∗|s)−1[Γ(b∗,d∗|s)−∇bP (b∗,d∗|s)κ̄]

−∇bΓ(b∗,d∗|s)−1[λ∗]

At the true κ we have ξl(b
∗,d∗,λ∗|κ; s) = υl. But we do not observe λ∗. Therefore, define

ξ(b∗,d∗|κ; s) = b∗ +∇bΓ(b∗,d∗|s)−1[Γ(b∗,d∗|s) −∇bP (b∗,d∗|s)κ̄]. Next, I consider what
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can be inferred for each of the four possible entry/bidding possibilities: i) bl > R, ii) bl = R,

iii) dl = 0, and the null case l /∈ L.

i) l such that b∗l > R: Any entry l such that b∗l > Rl, λ
∗
l = 0. By Assumption 8, entry l

of ∇bΓ(b∗,d∗|s)−1[λ∗] equals zero, and ξl(b
∗,d∗|κ; s) = υl is point identified.

ii) l such that b∗l = R: For entry l with b∗l = Rl, λ
∗
l > 0. From Assumption 8 entry l of

∇bΓ(b∗,d∗|s)−1[λ∗] is greater than zero, and we attain the following bound:

υl ≤ ξl(b
∗,d∗|κ; s) = Rl +∇bΓ(b∗,d∗|s)−1[Γ(b∗,d∗|s)−∇bP (b∗,d∗|s)κ̄]l (For vector M ,

[M ]l denotes row l). As (b∗,d∗) maximises expected payoffs, payoffs are (weakly) higher

from playing (b∗,d∗) than not entering auction l, playing (bl−,dl−) (the only difference

between these actions is that dl−l = 0). Therefore:

Γ(b∗,d∗|s)T (υ − b∗) + P (b∗,d∗|s)T κ̄ ≥ Γ(bl−,dl−|s)T (υ − bl−) + P (bl−,dl−|s)T κ̄. This

rearranges for: υl ≥ Rl − 1
Γl(b

∗
l ,d
∗
l |s)

[P (b∗,d∗|s)− P (bl−,dl−|s)]T κ̄.

iii) l such that d∗l = 0: Consider l such that dl = 0. They must attain a greater payoff

from dl = 0 than from bidding the reservation price. Consider alternate action (bl+,dl+)

where the only difference between this and (b∗,d∗) is that bl+l = Rl and dl+l = 1. Therefore:

Γ(b∗,d∗|s)T (υ−b∗)+P (b∗,d∗|s)T κ̄ ≥ Γ(bl+,dl+|s)T (υ−bl+)+P (bl+,dl+|s)T κ̄ Rearranging

this for: υl < Rl − 1

Γl(b
l+
l ,dl+l |s)

[P (b∗,d∗|s)− P (bl+,dl+|s)]T κ̄

D.2.3 Identification of κ under binding reservation prices

Under assumptions 2 - 5, and 8, the function κ is partially identified up to standard nor-

malisations. κ(s̄) is point identified at s = s̄ if we observe bidding strictly above R on a

combination of goods that would have the outcome sc = s̄. I prove this by exploiting mul-

tiple observations for every state to establish a necessary rank condition, similar to the one

presented in Section 3. Whereas the previous proof employed a condition on the mean of

ξ(b,d), this proof employs a condition on the marginal quantiles of ξ(b,d). I set κ(s) such

that the median (or some other quantile) is equal to zero.

Binding reservation prices cause our FOCs to break down, so that at the true κ (=

Cπ + βV) we can only write:

υ ≤ ξ(b,d|κ; s) = b +∇bΓ(b,d|s)−1[Γ(b,d|s)−∇bP (b,d|s)Asκ]
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Which only holds with equality for rows l with bl > R. Stack these over s for:

υ︸︷︷︸
LS×1

≤ ξ(b,d|κ) = b︸︷︷︸
LS×1

+∇bΓ(b,d)−1︸ ︷︷ ︸
LS×LS

[Γ(b,d)︸ ︷︷ ︸
LS×1

−∇bP (b,d)︸ ︷︷ ︸
LS×S

κ] (10)

ξ(b,d|κ) =


ξ(b1,d1|κ; s1)

...

ξ(bS,dS|κ; sS)

 b =


b1

...

bS



Γ(b,d) =


Γ(b1,d1|s1)

...

Γ(bS,dS|sS)

 ∇bP (b,d) =


∇bP (b1,d1|s1)As1

...

∇bP (bS,dS|sS)AsS


I require a rank condition on ∇bΓ(b,d)−1∇bP (b,d). If this has full rank then each ξ implies

a unique κ, so that if I observed just one observation of υ I could solve for κ. Note that

E[∇bΓ(b,d)−1∇bP (b,d)] = Ψ, the matrix presented in text. Importantly, the proof pre-

sented in B.1, that Rank(Ψ) = S−SC−|m̃in(S)| extends trivially to∇bΓ(b,d)−1∇bP (b,d).

The proof never exploited the fact we had taken an expectation, and entirely used the partial

ordering structure of the state space.

With binding reservation prices and entry, certain states may never be outcomes that

could have occurred with positive probability, so the corresponding elements of κ are not

point identified. These entries of κ do not appear in the above equation, having a coefficient

of zero. These states will only be partially identified.

Next, fix an LS × 1 vector of probabilities p.By definition of the marginal CDF:
p1

...

pLS

 =


F1(υ̃1|s1)

...

FL(υ̃LS|sS)

 =


Eυ1 [ I[υ1 ≤ υ̃1] |s1]

...

EυL [ I[υL ≤ υ̃LS] |sS]


Employ a change of variables, taking expectations over the observed random variables (b,d)

instead of υl. This change is only valid for state-lot combinations such that when υl = υ̃l,

bl > R, when ξl(b,d;κ) = υl holds with equality and the mapping from b to υl is continuous,

smooth, and monotonic.42 Drop rows where this condition fails, as we lose identifiability

42This is essentially an application of the Law of the Unconscious Statistician. Monotonicity of the inverse
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of corresponding elements of κ. If, even when υl is as large as υ̃l, the elements of κ̄(s)

corresponding to winning lot l are so small that they never bid strictly above R on lot l,

these elements of K(s) are not identified. This yields:

p =


Eυ1 [ I[υ1 ≤ υ̃1] |s1]

...

EυL [ I[υL ≤ υ̃LS] |sS]

 =


Eb,d[ I[ξ1(b1,d1;κ) ≤ υ̃1] |s1]

...

Eb,d[ I[ξL(bS,dS;κ) ≤ υ̃LS] |sS]


Proving point identification of κ requires we show that the pth quantiles of ξ(B,D|κ) equals

υ̃ only at the true κ. But, from our rank condition, a unique ξ(B,D|κ) implies a unique κ.

Therefore, only a unique κ is such that the pth quantiles of ξ(B,D|κ) equals υ̃. Therefore,

there exists a unique κ such that this equation holds.43

D.2.4 Identification of π and βV

I have proven the non-parametric (partial) identification of Fn and κ̄n = Πn + βVn. I also

previously established that the ex-ante value function is known function of beliefs, Fn, and

κ̄n = Πn + βVn, all of which are identified. Therefore so too is the ex-ante value function.

The continuation value V is then a function of the ex-ante value function and the transition

process, both of which I established are identified. Finally, fixing β, Πn is a function of κ̄n,

β, and Vn, ensuring that Πn is also non-parametrically partially identified.44

D.3 Endogenous Participation

In this Appendix I introduce endogenous entry in which entry is costly and υnlt is not observed

before entry, though I assume that the entry decisions of other players is observed before

bid function for bids strictly above the reservation price is discussed in A.
43It should be noted that κ is unique up to |m̃in(S)|+ SC elements of κ that must be normalised due to

the rank deficiency of the matrix Ψ. These elements are the entries associate with states s ∈ m̃in(S) that are
never observed as possible ex-post states, and one additional state from each component - associated with
sn = s1

n. We will see in Appendix D.2.4 that these normalisations do not impact the identification of π.
44If there are values of Πn(st) + βVn(st) that are only bid on at the reservation price, then the value

function is only partially identified. However, this non-identified region will generally be very small. Likewise,
elements of κ corresponding to states which never appear as possible ex-post states are zeroed out in this
equation, so it does not matter how they are normalised. Finally, the normalised elements corresponding
to one (minimal, with sn = s0

n) element from each component SC ⊂ S. These normalisations constitute
location shifts of Π for all elements in that component, as we essentially made the normalisations because
only marginal payoffs are identified. Finally, when we back out π, we will normalise π(s0

n) = 0, in line with
these location normalisations.
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bidding.45 I focus on the case with non-binding reservation prices, though it will be clear

how the results from Appendix D.2 extend to this case. I also discuss the effect of incorrectly

assuming participation decisions are exogenously determined, as I do in my application in

Section 5. I do not explicitly discuss estimation of the participation process as it is clear

how this follows from the identification argument. In particular, the econometrician can

apply the estimation procedure presented in Section 4, but estimate the entry costs using

a GMM procedure after they estimate the ex-ante value function (conditional on the set of

auctions entered), before using the estimated entry costs to evaluate the continuation value

and proceeding as normal.

The identification argument presents a minor generalisation on the one presented in the

main text. The argument proceeds as follows: F is non-parametrically point identified con-

ditional on κ = Cπ + βV. As in the previous Appendix, κ remains non-parametrically

identified conditional on the identification of Γ and P using observed variation in s, relying

on our rank condition on the matrix Ψ. Given identification of κ,Γ, and P , Proposition 3

ensures that the expected payoff from each entry structure is also non-parametrically identi-

fied. Given these expected payoffs, the entry problem is then a multinomial discrete choice

problem, so I rely on standard results for the identification of entry costs. Identification of

expected entry payoffs and costs ensures the ex-ante value function, and hence the continu-

ation value V, is identified, thereby identifying π = C−1(κ− βV).

I proceeds as follows: In Appendix D.3.1 I introduce changes to the main model, and

demonstrate that the previous identification results for F and κ also apply. In Appendix

D.3.2 I show that the distribution of entry costs is non-parametrically identified, and finally

that V, and hence π are also identified.

D.3.1 Changes to the Model

All objects below are functions of the state s. Conditional on an entry structure D and

having observed the lot specific values υ the agent places bids to maximise the following:

Π(b|υ;D) = Γ(b|D)T (υ − b) + P (b|D)TΠ +Q(b|D)TβV

Given the agent’s behaviour conditional on entry, the agent’s problem is to choose an

45Allowing the ‘entry structure’ to be unknown before bidding does not change anything substantive. We
simply alter the objects Γl P and Q to additionally take an expectation over the entry decisions of other
players.
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entry structure Dn to maximise their expected pay-off. I assume that agent’s entry costs, a

2L × 1 vector c, are drawn independently and privately from C(.|sn) (independent of s−n).

I assume that C is common knowledge.

The agent observes s and, given knowledge of F and κ and their equilibrium beliefs,

maximises an expected pay-off associated with any given entry structure:

W (Dn|c) = ED−n [Eυ[max
b
{Π(b|υ;D)} ]|Dn]− cDn

The continuation value associated with ending the period in state sc is then:

V (sc) = Es[Ec[max
Di
{W (Dn|c)} |s]|sc]

Identification of F conditional on the identification of κ̄

The Inverse Bid System, as given in equation 4, where the state variable has simply been

augmented to include the entry structure. Hence F remains non-parametrically identified

conditional on the identification of Γ, Q, and κ.

Identification of k

As in the main text, we can take a conditional expectation of the inverse bid system, setting

this equal to zero: E[ξ|s,D] = 0. We can then again stack this system of equations across

states and entry structures for 0 = Υ − Ψκ. Non-parametric point identification of κ then

requires the same rank condition on Ψ proven previously.46

Identification of Eυ[Π̃(b∗|υ; s,D)]

Recognise that Proposition 3 continues to hold, and so we can write the expected maximised

payoff, conditional on D, as

Π̄(s,D) = Eυ[Π̃(b∗|υ;D)] =Γ(b∗|D)T∇bΓ(b∗|D)−1Γ(b∗|D)

+ [Q(b∗|D)T − Γ(b∗|D)T∇bΓ(b∗|D)−1∇bQ(b∗|D)]Asβκ

46We normalise elements of κ corresponding to states which are either the minimal element of their
component, or never appear as possible ex-post states. By definition, there will be SC + |min(S)| of these.
In Appendix B.1 we found previously that Ψ has rank S − SC − |min(S)|.
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D.3.2 Identification of C

At the entry stage, the agent sets their entry structure Di such that:

ED−n [Eυ[max
b
{Π(b|υ;D)} ]|Dn]− cDn ≥ max

D′n 6=Dn

{
ED−n [Eυ[max

b
{Π(b|υ;D)} ]|D′n]− cD′n)

}
Similar to how we identify G, because we observe entry decisions, we therefore ob-

serve the equilibrium distribution of Dn for all n. Therefore, following from the above,

ED−n [Eυ[ max
b
{Π(b|υ;D)} ]|Dn] is non-parametrically point identified. Normalising that

the entry cost of entering zero auctions is always zero, I now exploit the exclusion restriction

that the distribution of c is independent of s−n. Therefore, variation in s−n leads to known

variation in ED−n [Eυ[ max
b
{Π(b|υ;D)} ]|Dn], thereby tracing out the distribution C(.|sn),

ensuring we have non-parametric identification.47

The ex-ante value function V e(s) = E[max
Dn

{
ED−n [Eυ[max

b
{Π(b|υ;D)} ]|Dn]− cDn)

}
],

and hence the continuation value V (s) are then also non-parametrically identified, which in

turn yields identification of the flow payoff function π.

D.3.3 Incorrectly Assuming Exogenous Participation

I now consider what object is identified and estimated when the econometrician incorrectly

assumes that firms participation decisions are exogenously determined, then applies the

estimation procedure presented in section 4.

Recognise that after the second estimation step the econometrician correctly recovers

both F̂ and κ̂. Then, when they attempt to evaluate the ex-ante value function by taking an

expectation over bids, they incorrectly take an expectation over the participation decisions

as well. That is, they attempt to form V̂ e(s) =
∫
b
W̄ (b)|s; κ̄)dG(b|s), but in truth evaluate:

V̂ e(s) =
∑
Di

Prob(Di|s)

∫
b

W̄ (b|s,Di; κ̄)dG(b|s,Di)

Prob(Di|s) gives the conditional choice probability of choosing entry structure Di. This is

the true ex-ante value function minus expected participation costs.

Therefore, when they evaluate the continuation value they will instead recover V̂ (sc) =

47Technically, identification is partial: The set of states is finite, so we will only actually be point iden-
tifying C(.|sn) at a finite set of points across its support. We can achieve full point identification either by
assuming discrete support, or introducing one continuously varying element of s−n.
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Es[V̂
e(s)|sc] = V (sc)−Es[Ec[cD∗i (c)|s]|sc], that is the continuation value minus the conditional

expected participation costs from the following period. Back out the flow payoff from the

pseudo-payoffs they recover π̂(sc) = κ(sc) − βV̂ (sc) = π(sc) + Es[Ec[cD∗i (c)|s]|sc]. That is,

the sum of the flow payoff and the expected future participation costs, which gives the

mispecification bias. Recognise that even if the distribution of participation costs does not

depend on the state, because payoffs depend on the state the optimal entry decision will

depend on the state, and so the distribution of realised participation costs will depend on

the state. Therefore, the econometrician correctly estimates flow payoffs only if participation

costs are zero.

D.4 Stochastic Combination Value

I now present two identification results for the case when the combination value is stochastic,

when π(s) is not a function but a probability distribution. I focus on the static setting for

two reasons. First, these results are novel even in the static case. Second, as we have

seen throughout this paper, identification of the primitives of a generalised static model

(where primitives are allowed to depend on s0 and s−n), is sufficient for identification of the

primitives of a dynamic model. This is because identification of the Pseudo-Static payoff

function κ implies identification of π.

I focus on two cases: First, when Π is a function of low-dimensional un-observables M ,

such as stocks, where M ≤ L. Second, I consider a case when M > L, but elements of the

unobservable vector are constant over time (e.g. constant parameters).

These extensions both centre on the theme of finding some way to reduce the dimen-

sionality of the unknowns. The key idea is this: Each observation of bidding on an auction

yields L pieces of information. Therefore, in order to have any hope at point identifying

unobservables, there cannot be more than L unobservables. However, as in the main text,

we can combine observations of bidding across period (or bidders) to identify unobservables

that remain constant across the observations.

D.4.1 Case 1: Known function of low dimensional un-observables

Suppose the combinatorial value can be written as π(mt) where mt ∈ M is an unobserved

(potentially) stochastic random variable of dimension M ≤ L. I require that π : M → K
is a known function (with range K ⊂ R2L). Importantly, some elements of m may represent

fixed parameters associated with the functional form π.
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Normalise the first element of this vector valued function (corresponding to player i losing

every lot) to zero, so that I focus on the marginal combinatorial pay-off π(m)2:2L − π(m)1.

The expected payoff is Π(b) = P (b)Tπ(mt)− Γ(b)Tb. Necessary first order conditions are

given by: 0 = ∇bP (b)π(mt)−∇bΓ(b)b− Γ(b).

The problem is then to show m is point identified. I make two assumptions about this

function that are sufficient for mt to be point identified:

Assumption 9. i) π(m) is continuous and continuously differentiable for all mt.

ii) For any m and m′ there exists a set U ⊂
{

1, 2, ... , 2L
}

with |U| = M that defines the

vector value function FU where FUn (m) = ΠUn(m) such that

(m−m′)T (FU(m)− FU(m′)) > 0

The second part of this assumption is essentially an extension of strict monotonicity to

the case of 2L dimensional functions in M dimensional variables. The assumption states that

for any two distinct m and m′ we can find a set of rows of π(.) such that this inner product

is strictly positive.48 A key result of this property is that the function π(.) is a bijection:

Each m maps onto a unique π, and the condition ensures that for any two distinct m and

m′ it must be the case that π(m) 6= π(m′) (since otherwise we could not find a U such that

(m −m′)T (FU(m) − FU(m′)) > 0). This ensures that the inverse π−1(.) exists, such that

for all m ∈ M m = π−1(π(m)). Furthermore, because π(.) is continuous and continuously

differentiable everywhere, so that π−1(.) must be differentiable everywhere, π−1(.) must also

be continuous.

Proposition 7. Under assumptions 2, 3, & 9, mt is identified up to normalisation.

For example, if the second a third elements of mt are parameters describing the mean

and standard deviation of m1t, then mt is identified up to location and scale.

The proof requires arguing that with L equations in only M unknowns there exists a

unique solution to the system. The proof proceeds by recognising that the set of vectors π

which satisfy the FOCs is convex. From the continuity of the inverse function π−1(.) and

the (generalised) intermediate value theorem, this implies that the set of m for which the

FOCs hold is path connected. So, there must be a point arbitrarily close to mt for which the

FOCs hold. However, that ∇bP (b) has rank L and the function π(.) is invertible implies

the system is locally unique.

48This property is satisfied when, for example, each element of J is weakly monotone in elements of m,
and strictly monotonic in at least one element.
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Proof: 1. Consider the set of 2L× 1 dimensional vectors which satisfy the system of equa-

tions ∇bP (b)π = ∇bΓ(b)b + Γ(b). This set, denoted K̃, is convex, and hence

path-connected, as for two vectors π,π′ ∈ K̃:

λ∇bP (b)π + (1− λ)∇bP (b)π′ = (λ+ (1− λ))(∇bΓ(b)b + Γ(b))

∴ ∇bP (b)(λπ + (1− λ)π′) = ∇bΓ(b)b + Γ(b)

2. This implies the image of the intersection of K̃ and K defined by the continuous

function π−1(.) (the set of m for which the FOCs hold) is also be path connected.

This follows from the generalised intermediate value theorem, which states that

for a continuous function f : X → Y, if the set X is path-connected, then so is

the image f(X).

3. If the intersection of K̃ and K contains more than one element, then for any m

which satisfies the FOCs, there is an arbitrarily nearby m′ which also satisfies

the FOCs.

4. However, from the inverse function theorem, the FOCs are locally unique. The

Jacobian of these FOCs, with respect to m are given by:

∇bP (b)∇mπ(m)

This has rank M because ∇bP (b) has rank L (it consists of L linearly indepen-

dent rows), and π(m) is invertible (so ∇mπ(m) has rank M). Therefore it is

locally invertible, and so the set of m which satisfy the FOCs contain a single

element.

D.4.2 Case 2: When M > L

When M > L we can combine information across observations, instead of identifying ev-

erything from a single observation, so long as enough elements of M are constant across

observations. This is relevant when mt can be decomposed into (m1
t ,m

0), where m0 are

fixed parameters. Suppose M ≤ 2L, and in particular, |m1
t | < L. Consider a pair of FOCs

from two separate periods t1 and t2. Importantly, I still impose assumption 9. Combine the

59



two sets of first order conditions as follows:(
∇bP (bt1) 0

0 ∇bP (bt2)

)(
π(mt1)

π(mt2)

)
=

(
∇bΓ(bt1)bt1 + Γ(bt1)

∇bΓ(bt2)bt2 + Γ(bt2)

)

Uniqueness of the solution to this system follows the same logic as the previous proof

with the added note that ∇(mt1 ,mt2 )

(
π(mt1)

π(mt2)

)
has rank 2|m1

t |+ |m0|, so that I can appeal

to the inverse function theorem for local uniqueness.

This result allows us to add a large number of additional parameters to the function π(.)

which are identified by using variation across observations. This employs a similar philosophy

used to prove the identification results in the main paper.

E Monte Carlo Simulation

I now present the results of a Monte-Carlo study evaluating the estimator proposed in 4.

As discussed in GKS, the difficulty in simulating these games is that solving for equilibrium

bidding strategies is intractable. Meanwhile, numerically finding equilibrium bidding strate-

gies — by iterating over equilibrium beliefs and actions until a fixed point is found — is

extremely computationally intensive.

For simplicity I focus on the case where bidders are bidding against a parametric set

of beliefs. That is, I essentially take the equilibrium as given. Furthermore I focus on an

equilibrium in which equilibrium beliefs do not depend on each bidder’s individual states

{snt}n∈N. This is similar to many applications seen in practice, including GKS, Backus and

Lewis (2016), Groeger (2014), Balat (2013).

E.0.1 Set up

Every period there are two auctions (L = 2) and two types of object, denoted x and y. Each

lot contains one type of object, and one lot of each type of good is auctioned each period.

Some lots contain 10 units of the good, while other lots contain only 5. The set of available

lots is denoted (zx, zy): Lot 1 contains zx units of x, lot 2 contains zy units of y. Therefore

the possible characteristics of lots Xt = {(5, 5), (10, 5), (5, 10)} give the common state. For

simplicity, this transitions stochastically where each states occurs with equal probability,

independent of previous states.
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States consist of bidders’ stocks of the two objects, which come in integer values: sxnt ∈
{ 0, 1, ... , 100}, likewise for good y. At the end of each period bidders consume 3 units of

good x with probability 0.4 and three units of good y with probability 0.3, until their stocks

fall to 0. A bidder’s combinatorial flow pay-off is given by:

π(sx, sy) = θ1 log(sx + 1) + θ2 log(sx + 1) log(sy + 1)

Where (θ1, θ2) are parameters set to 20 and 10 respectively. θ1 ensures pay-offs are not

additively separable over time, while θ2 > 0 ensures the lots are complements. The lot-

specific pay-offs are drawn from:

υnt ∼ N

(
0 900zxt 100zxt z

y
t

0 , 100zxt z
y
t 400zyt

)

I take as given the equilibrium distribution of the highest rival bids, which follows a type

2 extreme value distribution. The mean of this distribution is given by the average (across

states) marginal payoff from each lot (≈ (17.1zx, 12.5zy). The variance is tuned to the

variance (across states and lot-specific payoffs) of the marginal payoffs from winning each

lot. The shape is set to 0.1.

I perform value function iteration to find the continuation value under this distribution

of pay-offs and these equilibrium beliefs. Having found a continuation value, I can then

simulate a dataset. Given the set-up the state space consists of 30, 000 unique elements.

Focusing on a large number of elements is intended to simulate my real world application

when the state space will be treated as continuous.

I simulate 1, 000 datasets, with T ∈ { 300, 1000, 10, 000} observations uniformly sampled

from the state space. I consider 3 estimators: 1) a semi-parametric estimator using the

same functional form as π, 2) a quadratic polynomial, and 3) a semi-nonparametric cubic

spline. For the spline, I use uniformly spaced knots, setting the knots to ensure at least
√
T

observations per knot. For each estimator I consider estimates from using no instruments,

the baseline “initial state” instruments, and all the possible ex-post states as instruments.

The first stage is estimated using correctly specified maximum likelihood.
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E.0.2 Results

Results are presented in figure 8. Each estimator yields estimates of π̂(sn) for each sn ∈ Si.
I then fit the correctly specified π across these states, extracting θ̂1 and θ̂2.

The semi-nonparametric estimator (3) outperforms the two semi-parametric estimators,

even in relatively small samples. However, it is very computationally intensive, with estima-

tion taking almost 100 times longer than the semi-parametric estimators. Semi-parametric

estimator (1), which fits the true functional form of π to both κ and V , performs poor-

est. This is because we should not expect either κ or V to inherit the functional form of

π. Likewise, estimator (2), the flexible polynomial, performs reasonably well despite being

misspecified. The choice of instruments is found to be particularly important. Using no

instruments (∅) out performs the initial state instrument. This arises for the combination

of two reasons. First, except in very large samples, the initial state instruments suffers from

weak instrument problems, as variation in the initial state does not induce enough variation

in bidding behaviour. Second, the degree of bias in the least squares estimation is expected

to be small, depending on the correlation between Γl(bl) and υl′ . This correlation is relatively

small because bl varies much more with other variables, such as υl and the state variables.

Finally, using the ex-post states as instruments performs much better, but does not dominate

(nor is dominated by) the no-instrument estimator.

F Estimation Details and Additional Results

F.1 Participation

Figure 9 below plots the ROC curves from considering firm participation behaviour. In

particular, we see that participation is predominantly determined by the distance between

a firm and the project. In fact, distance is a far better predictor of participation than it

is of bidding behaviour, conditional on entry. This is potentially because firms know they

can never deliver on contracts more than a certain distance away, due to the difficulty of

transporting asphalt or cement such distances before they cool.

While both backlogs and the size of other contracts bid upon does help predict partici-

pation, the explanatory power is minor relative to distance and other bidder × lot specific

characteristics. I previously established that this was not the case for bidding behaviour con-

ditional on participation. This suggests that entry behaviour is fairly insensitive to changes

in firms’ backlogs, and so entry decisions are unlikely to change as we consider changing the

62



Figure 8: Monte Carlo Study

Instrument ∅ st {sct}
θ T Mean SD rMSE Mean SD rMSE Mean SD rMSE

(1) θ1

300 5.12 10.9 18.5 4.08 11.9 19.9 3.48 11 19.8
1, 000 5.71 5.12 15.2 4.02 6.42 17.2 4.66 5.75 16.4

10, 000 6.03 3.09 14.3 4.71 3.48 15.7 5.14 3.27 15.2
θ2

300 5.62 1.34 4.58 6.57 1.57 3.78 6.23 1.4 4.02
1, 000 5.78 0.631 4.26 6.75 0.852 3.36 6.35 0.766 3.73

10, 000 5.85 0.348 4.16 6.82 0.439 3.21 6.4 0.411 3.63
(2) θ1

300 27.2 6.89 9.98 -75.4 126 158 24.2 14.6 15.1
1, 000 27.2 3.93 8.19 -73.7 57.5 110 24.7 7.51 8.85

10, 000 27.4 1.49 7.51 -69.9 17.7 91.6 24.6 2.64 5.29
θ2

300 12.1 0.988 2.31 39.6 20.1 35.8 12.6 2.05 3.28
1, 000 12.2 0.6 2.24 38.5 8.55 29.8 12.6 1.1 2.8

10, 000 12.2 0.221 2.23 37.5 2.7 27.7 12.7 0.361 2.7
(3) θ1

300 19.7 6.13 6.14 28 108 108 18.5 11.1 11.2
1, 000 20.1 3.26 3.26 21.9 33.1 33.2 19.4 5.81 5.84

10, 000 21.2 1.32 1.81 22.2 4.18 4.72 20.3 2 2.03
θ2

300 10.4 0.897 0.968 9.11 16 16 10.7 1.69 1.82
1, 000 10.2 0.48 0.535 10.3 5.26 5.27 10.5 0.867 0.983

10, 000 9.99 0.196 0.196 9.94 0.647 0.65 10.1 0.31 0.344

Note: The true values for θ1 and θ2 are 20 and 10 respectively. The three instruments are: ∅ = no
instrument (OLS), st = initial states, {sct} = all the possible ex-post states, given the period began
in st. Estimator (1) is a semi-parametric estimator, using the true functional form of π to fit κ and
V . Estimator (2) fits a cubic polynomial, while Estimator (3) fits a cubic spline.

auction mechanism.

F.2 Constructing the Index Function

The index is constructed as in Aradillas-Lopez et al. (2022) and Raisingh (2021), using most

of the same covariates for the random forest as in Raisingh (2021).

The aim is to predict the minimum rival bid in each auction using various elements of the

state. To capture rivals’ states I classify the rivals of each bidder according to their distance

from the bidder using distance bins (near, 0-25km, medium, 25-50km, and far, >50km), and

take the average general backlog of rivals within each bin. The features I include as predictors

to form λnt are: The number and average backlog of rivals in each distance bin, the number
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Figure 9: Evidence of Deterministic Participation Behaviour

Note: The plot shows the estimated ROC curves from four logit specifications, assessing how firm’s entry

decisions are predominantly determined by, among other things, the distance between the firm and the

contract.

of asphalt / concrete projects auctioned that period, as well as interactions between the type

of contract (concrete/asphalt) and the number of concrete / asphalt projects auctioned each

period.

I now detail the random forest I use to estimate the competition index λ, given the

covariates outlined above. For a detailed description of the algorithm, see Appendix B.2 of

the full random forest algorithm Raisingh (2021). The key distinction, relative to a standard

random forest, is the need to avoid over-fitting when making predictions on the training

data. Broadly, the algorithm proceeds as follows:

1. Split the data into K equal sized folds.

2. Estimate K random forests, each with Q trees, on data from K − 1 of the folds.

3. Combine the K random forests.

4. Repeat steps 1− 3 L times, yielding L random forests, each with Q×K trees.

5. Combine the L random forests.
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Following Raisingh (2021) I set L = 24, K = 2, and Q = 50. So every data-point is

used to train around 1
3

of trees. Figure 10 gives a variable importance plot, highlighting

which variables have the most predictive power for the minimum rival bid, and so what most

strongly influences the competition index. As in Raisingh (2021), rival backlogs have the

most predictive power, followed by the number of rivals. Further away rivals appear to more

strongly influence the index, perhaps because they are likely to be larger firms.

Figure 10: Variable Importance Plot

Note: This plot shows the reduction in sum of squared residuals that occurs from splitting the data on each

variable. Higher numbers demonstrate more predictive power.

Because the index is auction specific I average across auctions to form the period ×
bidder specific competition index. Since the most important predictors are all period ×
bidder specific the index varies much more across periods than with periods.

F.3 Additional Results

F.3.1 First Stage

Figure 11 plots the observed distribution of minimum rival bids against the estimated dis-

tribution. The three parameter Weibull distribution fits the data well.
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Figure 11: First Stage Fit

F.3.2 Second Stage

Figure 12 displays additional results from the second estimation step, demonstrating how

the pseudo-static cost function varies with the competition index λnt. The estimated pa-

rameters can be interpreted as follows: Holding fixed a general contractor’s (t1) backlog of

asphalt projects, every one standard deviation in λ, as competition decreases, increases the

opportunity cost of winning by around $90, 000. Estimated parameters generally have the

expected signs, with pseudo-costs increasing in the degree of competitiveness (coefficients

are positive (negative) for positive (negative) coefficients in Figure 5).

Furthermore, the estimated interaction parameters are jointly significant (p < 0.01) for

all but the specification with weak instruments. Under the exclusion restriction that π(sn)

is independent of λn, we can therefore reject the null hypothesis that β = 0, rejecting the

myopic model. The association between the degree of competition and bidding behaviour is

strong, even when we account for equilibrium beliefs.

F.4 Comparison to Misspecified Models

I now compare estimates of π(sn) from the dynamic multi-object model presented above, to

two misspecified models: A dynamic single object model, and a static multi-object model.

Results are presented in figure 13.
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Figure 12: Second Stage Results: λ interactions

Instruments none (OLS) snt snt +−→s nlt snt +−→s nlt +−→s nmt
Type θ̂ SE θ̂ SE θ̂ SE θ̂ SE

sat × λt
t1 84.6 23.8 361 510 87.2 27.4 91.9 25.7
t2 157 35.8 1230 2670 136 37.4 146 32.5
t3 16.4 5.45 1170 2580 16.5 6.48 15.8 5.11

sct × λt
t1 55 15.6 207 931 68 16.6 57.4 16.3
t2 -56 39.6 6640 15,700 -80 45.7 -75 39
t3 3.03 4.87 -1,260 3160 2.17 5.2 3.29 4.87

(sat )2 × λt
t1 -2.5 3.03 -74.1 147 -2.19 3.5 -4.06 3.2
t2 -8.38 4.87 -586 1370 -4.91 5.94 -7.38 4.93
t3 0.0262 0.124 -65.4 123 0.126 0.144 0.0681 0.123

(sct)
2 × λt

t1 -2.19 3.38 -42.3 302 -2.65 3.48 -1.45 3.52
t2 -2.13 2.35 -44.3 327 -3.74 2.74 -3.29 2.5
t3 -0.24 0.139 -7.07 28.2 -0.00431 0.366 -0.19 0.2

sat × sct × λt
t1 -4.63 4.36 8.17 142 -8.43 4.87 -5.67 4.52
t2 44.2 15.5 133 704 60.2 16.8 56.6 14.8
t3 0.888 0.42 105 244 0.141 1.15 0.724 0.617

R2 0.6 -10.8 0.597 0.599
Observations

T 3919 3919 3919 3919∑
t Lt 14691 14691 14691 14691

Note: Estimation includes county and firm × contract type fixed effects. Figures are given in 000s of dollars.

Holding fixed a general contractor’s (t1) backlog of asphalt projects, every one standard deviation in λ, as

competition decreases, increases the opportunity cost of winning by around $90, 000.

F.4.1 Static Model

The static model is nested within the dynamic multi-object model, imposing β = 0. Esti-

mation involves the same first and second steps presented in section 5.

F.4.2 Single Object Model

Even though bidders place multiple bids each period, the static single-object model ignores

possible cost-synergies between lots, even when it allows costs to be non-linear in backlogs.

One interpretation is that separate groups within the firm bid simultaneously, without com-

munication among one another. Therefore bidding groups do not take into account how

payoffs depends not only on their own bid, but also other bids within the firm.

I estimate the model using JP’s procedure. I complete the first estimation step as in
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the text, then skip to the third estimation step and evaluating the continuation value as in

JP, taking an expectation over observed bids instead of using estimated bid distributions.

Because, in practice, multiple auctions occur each period I evaluate the expected period

profit by taking the sum of the expected (additive) profit from each auction occurring that

period. Finally, I back out π(sn) from the inverse bid function.

F.4.3 Results

Estimates for the static model are off by an order of magnitude, but are extremely similar to

the results for the pseudo-static pay-off presented in figure 6. This is because we essentially

mistake the sum of current costs and discounted future costs (and opportunity costs) for just

current costs. The results for the dynamic single-object model are more more similar to the

dynamic multi-object model. However this misspecified model generally under estimates the

extent of the returns to scale, generally underestimating the degree of non-additivity across

lots.

Figure 13: Model comparison

Model DMO DSO SMO

π(sn) Type θ̂ SE θ̂ SE θ̂ SE
sat

t1 123 7.01 39.5 7.77 423 23.6
t2 285 11.3 18.7 12.7 835 36.3
t3 40 1.92 145 7.58 108 5.77

sct
t1 107 5.35 49.4 9.86 378 17.3
t2 89.1 11.9 25.9 14.3 153 53.3
t3 15.6 1.91 89.7 6.05 55.2 6.44

(sat )2

t1 -0.337 1.29 0.0669 1.59 -0.116 2.44
t2 -9.26 2.46 -1.68 2.5 -16.2 4.4
t3 -1.34 0.147 -2.08 1.01 -0.229 0.0872

(sct)
2

t1 -7.6 1.13 -1.39 0.889 -14.5 2.12
t2 -14 3.38 -2.48 1.99 -4.93 1.82
t3 -0.479 0.102 -0.671 0.672 -0.328 0.11

sat × sct
t1 1.38 1.52 -0.364 2 7.94 2.97
t2 33.4 7.12 -1.6 3.44 58.8 14.4
t3 0.432 0.199 0.801 0.876 0.534 0.34

R2 0.597 0.595 0.581
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F.5 Counterfactual Simulations

I now detail how I simulate the sequential auction regime. Time is discrete, and each period

in the simultaneous regime (14 days) is split into 100 sub-periods. Auctions are distributed

randomly across sub-periods.

To map the estimated AR(1) transition process from 14 day-long periods into 100 sub-

periods I assume the sub-period transition process remains AR(1), such that the mean and

variance of the process is the same as the estimated process over the 100 sub-periods, ensuring

the long run process is the same. Likewise, estimated payoffs π(sn) are only defined on 14 day

long intervals. To evaluate payoffs in the sub-periods I find a function π̃(sn) such that the

expected sum of these sub-period payoffs across 100 sub-periods equals π(sn). Finally, I use

the same estimated competition index as in the text, capturing the amount of competition

for each contract.

For each parameter draw, beginning at an initial set of equilibrium beliefs, I numerically

find bidders’ continuation values. I iteratively loop through auctions numerically maximising

bidders’ payoffs. I make the simplifying assumption that bidders only enter the auctions they

were actually observed entering, assuming these are the auctions they have the largest cost

advantage in, regardless of the choice of mechanism. In finding the continuation value, to

facilitate convergence, I fix bidders’ states at their observed levels. Just as in estimation I

fit a quadratic form to bidders’ maximum expected payoffs, and so evaluate the next the

continuation value. I continue this process until the continuation value converges. I also use

Newton-Kantorovich iterations to improve convergence, employing the envelope theorem to

evaluate the derivative of the maximum expected payoffs.

I then simulate the system again, allowing bidders states to vary as they win, and gradually

complete, contracts. I then fit the same Weibull form to minimum rival bids as used in

estimation. While the payoffs of Fringe bidders do not change in the counterfactual scenario,

their beliefs do. I continue this process until achieving convergence. While there may be

multiple equilibria, by beginning with the equilibrium beliefs from the simultaneous regime

I try to find a equilibrium close to this regime. Therefore any equilibrium will be relatively

nearby that from simultaneous auctions, ensuring estimates are conservative.
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